Radio Frequency Identification
Chip Reader

Software Development Kit
Version 3.5

Programmer's Guide

RGVI.00010-01 33 01

Regula 2021

Edition from 22.12.2020
Version 3.5.60.120

2 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

CONTENTS

CONTENTS ...ttt et s h e a ettt et e bt s bt e bt saeea e et et e s b e ebeebesh e eatemtea b et e beebeeb e e st ent et et e besbeebeeneentenaens 3
LIST OF ABBREVIATIONS......cottittiititetetertesteet ettt ettt ettt et ettt b e s bt bt e aeeat et e e et e s be e bt e bt e st eat et et enbesbeeneententens 11
REFEREINCES ...ttt sttt sttt ettt b e s h e bt a et e st e b e e bt e bt e aeeat et et et e e ae e bt e st eate b et e besbeebeeneententens 14
INTRODUCTTON ... ctitteiteete ettt ettt et e teete st e stt e s bt e bt etesatesatasat et ten st enseeasesstesstesseessesasesatesatesstesstenseenseensesasesaeennes 17
SYSTEM REQUIREMENTS.......cutititaieeeteete ettt ettt ettt et et et e e te s te s st esse e st saeesatesatesseaseenseensesnsasasesaeenas 18
WH AT S INEW ettt ettt ettt et e et e e st e e st e s st e s bt e bt et e e abe s et e eat e st e s eenbeenbeentesasesatesutenseeseensesnsenns 19
1. SDK STRUGCTURE ...ttt ettt ettt ettt e e st e st e bt e aeste st e satesaeenbeenseemsasatesstesseesesasesntesatesatesstanseensenn 22
2. SDK FEATURES.......ooteteeete ettt ettt ettt ettt b e bt e bt e ae e st et et et e s be e bt e bt euteat et e besbeebeeneententens 23
3. INSTALLATION AND USE OF SDK TOOLScoiiiiririnintetetentesieste ettt ettt sttt ettt saesbe st et esens 24
4. GENERAL INFORMATIONooutitititeitenteetestt ettt sttt ettt beshe et eat et et et e s be s bt e st est et et e besbeebeeneententens 25
AT, RFID-CHIP TYPES «.ututttteteteteteteieattrtetses et tebebes sttt s st et ebebesese sttt e s st e b e b et ebebes e sttt et st et ebebebe s e st sttt s et et et ebebesesans 25
4.2. LOGICAL DATA STRUCTURE OF RFID-CHIPS (PROTOCOL MIFARE® CLASSIC PROTOCOL)....cuvveveiereisreneeseeeeesneesnnns 26
4.3. LOGICAL DATA STRUCTURE OF RFID-CHIPS (PROTOCOL ISO/IEC T4443-4)cuimiiinirerieeeieieieeeeeneeesesee e 27
4.3.1. €PasSPOIt APPLCATIONouiiieieiiee ettt sttt sttt s e s s et sens 27
4.3.2. €D APPIICALION 1.eiiieiiiee ettt ettt ettt s et sene et esenn 28
T T YT o 102N o] o] [Tet= T o TSRS 30
4.3.4. DL APPIICATION vtttk bbbt 30
4.4, ACCESS KEYS TO PROTECTED DATA .ottt ettt ettt ettt bbbttt sttt 32
4.5, PASSWORD MANAGEMENTututuiuiuiirtrtetetetetetestatstreatassteseseseseseseaeataeas st eseseseseseseseatatat et et et ebeseseseat ettt esesesesesesesans 33
45T, PIN ettt ettt h bt h ettt e b b e bt bt e a e e st e a s et e beebeeheeheea e et et e beebeebeeaeeat et enean 33
4.5.2. €SIGNPIN .otttk ettt sttt b et be et benn 34
4.6, TERMINAL TYPES...cututttteteteueteteueuestaeststetetetetesesestateatassseseseseseseatataea e s st esebebebebeseaeat e et et et et et ebebeseae sttt s asebebebebesanens 35
4.7. EFFECTIVE TERMINAL AUTHORIZATIONtttteueututattntetsteseteseseseataentaessstssesesesesesenentatatssasesesesesesensnsntnssssssesesesesesens 36
4.8. DATA SECURITY MECHANISMS w..ceiuiuiiirirtetetetesentatatatatasssssesesesesesesestaeasssssesesesesesentatatatasaseseseseseseasasntneasssesesesesesesens 39
4.8.1. PassiVe AUTNENTICAtIONc.eciviiieiieieieee ettt sttt s et s e s s e sesens 39
4.8.2. ACtIVE AUNENTICATION ..ottt sttt b et s e s s e e s sens 40
4.8.3. ACCESS CONTIOL. ..ottt ettt sttt sttt sttt st e st et b et se e b et et e be e e e sbe e eneee 41
4.9. ADVANCED SECURITY IMECHANISMSc.vuiuitetiniieseststesestssesensssesessssesensssesessssessnsssesenssesensssesessssesensesesssesensssssesesns 42
4.9.1. Password Authenticated Connection Establishmentcocovniiinine 42
4.9.2. Chip AUthentication................ccooiiiiiiiieee ettt 42
4.9.3. Terminal Authenticationccoooiiiiiiiie ettt 43
4.70.ADDITIONAL SECURITY IMECHANISMSetttteteutatttatetstetetesesesesteesessssseeseseseseseseateatasasesesesesaseneasasssasssesesesesenens 44
4.10.1. Restricted Identification..................ccooiriiiiei s 44
4.10.2. Auxiliary Data Verificationcccooiireiiieice e 44
4.11.PROCEDURES OF DOCUMENT AUTHENTICATIONveutteeenieeseatssesestssesesssesesessesensssesessssesensesesessssessnsesesssssensnssseseens 45
4.11.1. Standard Inspection Procedure................ccocooiiiiiiinieeeee et 45
4.11.2. Advanced Inspection Procedurec.ccooiirieinnieininieenece ettt 45
4.11.3. General Authentication Procedure.ocoovoiieioiieiieieeee e 46
5. WORKING WITH SDK ...ttt ettt ettt st be et e bt st e sat e s bt e bt e bt eabe et e eutesbeesbeenbeenbeenbesaeene 48
5.1. ORGANIZATION OF WORK WITH THE MAIN CONTROL LIBRARYccccootririiiiienienienieneeteeetereseessesneeneeeenees 48
5.2. ADDITIONAL DATA VERIFICATIONccoooiiuiriiiiiniinteieiintententrsetenessensestssessesessessestssesenessessestesensenessenseneesenseneenen 50
5.3. RFID-CHIPS READER CONNECTION AND ACTIVATION........c.oocivueiiuirrereiinteeeninreneertnneseenessennenessesesessessenessesneseenes 51
5.4. READER PARAMETERSc.cueutuiuiutttntntrtsteteteteseueaeattststsestetetebeseses et st st st sesesebebeseaestatt st et et ebebebebebeseaeattatsesestena 53
5.4.1. RFID-chip Detection Modes.............c.ccooiiiiiiiiiiincccccte ettt 53

5.4.2. Mode to Ignore RFID-chips Supporting only Protocol ISO/IEC 14443-3 (MIFARE® Classic
PrOTOCOI) ...ttt ettt et et ettt et et et e eteeteetsessess et ensenteetsessensenseanan 53
5.4.3. Data Exchange Speed between the Reader and the RFID-chip...............ccccoconiinininnneniiene 53
5.4.4. Size of Operating Data Buffer for Readingccccoooviviiririneiceeeeee s 54
5.4.5. ANteNNa ParameEterscoooiiiiiiiiiii ettt ettt 54
5.4.6. Completion of Work with RFID-Chipc.ccccccooiiiiiiirccccee e 55
5.5, SDIPARAMETERS........ceueueueueueututattatatstetetetesesestatatatestssssesesesesesentatatatassseseseseseseseatatatatsesssesesesebesasenensatatssssssesas 56
55T LOGGUNG ...ttt ettt bbb 56

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 3

Contents

5.6.

5.7.

5.8.

5.9.

5.5.2. The Parameters of the Passive Authenticationccoooiiiinniiii e, 56
5.5.3. Definition of the Local Public Key Certificates Library for Terminal Authentication 57
ORGANIZATION OF WORK WITH ELECTRONIC DOCUMENTccoiiniiiiiiniiieiinieieteteteteie ettt 59
5.6.1. Modes Of OPEIation........cceuiuiuiuiuiiiiiiiiiiiiiiiiic s 59
5.6.2. Representation of Read Data...........cccccviiiiiiiiiiiiiiiiiii s 60
5.6.3. Data Reading Result ACqUiSItION.........cccceeiiiiiiiiiiiiiiiiiii s 60
BATCH OPERATION IVIODE..........ocuiuiuiiiiiiirieie ettt ettt sttt ettt sttt bbbttt sttt et bt se e eeea 64
5.7.1. Determination of RFID-chip Characteristics...................cccoovvueiririecinieeiieeieee e 64
5.7.2. Data Reading via MIFARE® Classic Protocolccccocoeuiurimriiiniueieinieinesee e 64
5.7.3. Authentication using MIFARE® Classic Protocolccccoceuiuririniunieineinieseieeeseee e seeeaeee 65
5.7.4. Data Reading via ISO/IEC 14443-4 Protocolccocoeiirimiiinieirieeeee e 66
5.7.5. Protected Data Reading (BAQC)ccoiiuiieiriiieieieieeeiee ettt ettt 67
5.7.6. Protected Data Reading (EAQC)c.ccuoiriiieirieieieietecetete ettt ettt ettt nes 68
5.7.7. Passive and Active Authentication ..o 69
5.7.8. Data Reading Procedure Completionc.ccccconniieciiinnnnnneeccicccc e seeesenenenes 71
SESSION OPERATION IVIODEooiiiiiitiititetetetee ettt ettt st ettt b e s b bt ettt e b sbe s bt et e e eaesaenes 72
5.8.1. Management of Document Working SeSSion...............ccovvueieieuiiiiininnnnneeecccccrenenseeerenenenes 72
5.8.2. Access to the Results of the SESSION................c.ccciiiinnninniiccc e 72
5.8.3. Opening of the Session and Determination of Basic Functionality of the Electronic Document.73
5.8.4. Setting Terminal Configuration..................ooiiuiiiiiiie e s 75
5.8.5. Authentication Procedure Type Definitionc.cooiiiiiiiiiiiinnneeeee e 76
5.8.6. Protected Data Access Key Definition.................ccccooiruriiinieinininiiecee e 76
5.8.7. Authentication Procedures Performance..................cccoviieciiiinnnnnneececcces et 77
5.8.8. Organization of Secure Data Access Channelcccocooiiiiiinneiee e 78
5.8.9. ApPlication SEIECHION..............ccooiiiiiieeee ettt ettt nes 79
5.8 10.FIle REAAINGomiiiii ettt et 80
5.8.11.Data Reading According to MIFARE® Classic Protocolccccooceuviiueinieininieinieeiseee e 82
5.8.12. Passive Authentication: Document Security Object Verification....................cocccoceeenne. 83
5.8.13. Passive Authentication: Data Informational Groups Integrity Verification 84
5.8.14.Chip Authentication Procedure......................oooiiriiiriiireeee ettt 85
5.8.15.Terminal Authentication Procedure..................c.cccoriiiniiiininieinineiiceceete e 86
5.8.16.Active Authentication Procedurecccovueiiiiininiiininieiniccre ettt 88
5.8.17.Restricted Identification Procedurecooiiiiiiiiiieccce e 88
5.8.18.Auxiliary Data Verificationccooiiririiirieirec ettt 89
5.8.19. Data Informational Group Contents Update (elD application)..............c.ccccceevrrvirirennnne. 89
5.8.20.Password IManagementcccoovueiiuirieiniinieiee ettt ettt ettt ettt ettt b e ns 90
5.8.21.eSign Application Management and Usage................c.coouririeiiuiuiiininnnnneecceeeeeeeeseenene e 90
5.8.22.Saving and Loading of Work SessionDatacocooriieiiiiiiinnneeccccceneeee e 91
SCENARIO OPERATION IVIODE ..ottt ettt ettt ettt b b sttt e et b et et e b e ne et e st esetee 93
5.9.1. WOIKING SCENQATIO............oiiiiiiie ettt e 93

5.9.1.1. SCENATIO SLIUCEUTE. ..c..eetiietitirierieeieteet ettt ettt et sb et ettt et saesb e bttt e e e neneens 93

59.1.2. Terminal Type Definitioncccooviiiimimiiiiiiiiiiiicccccc e 93

59.1.3. Authentication Procedure Type Definition..........ccccceceiivininininiiiiiiiiccccn 94

5.9.1.4. Base Secure Data Access Channel Mechanism Definitionccoceeveveeeerienierenenennen. 95

5.9.1.5. Secure Data Access Key Definition ... 95

5.9.1.6. Terminal Authentication Procedure Parameters...........ccceeceererienirenienenenenenenieneereneenens 95

59.1.7. Verifiable Auxiliary Data Definition...........ccocovvriiiiiiiinnnecccccccreeceeennes 95

5.9.1.8. Passive Authentication Procedure Parameters...........ccoceeeeeeeeiiesienieneneneeeeieseeseese e 96

5.9.1.9. Active Authentication Procedure Parametersccoceverieiriesieneneneececeeieiese e 96

5.9.1.10. Restricted Identification Procedure Parameters............ccocevveerueneeerienieenieniecneieeneenees 96

59.1.11. Definition of the Set of Informational Data Group to Read.........c.ccccccecevvrrrirrucrccnnee 96

5.9.1.12. Parameters for Data Reading According to ISO/IEC 14443-3............ccccooovrrrnennnnnnes 97
5.9.2. Scenario COMPOSItIONcooooiiiiiiieiee ettt ettt es 97
5.9.3. SCENAIIO EXECULION..........cooieiiiieiteeeteet ettt ettt et b e s e se s esseseesenseneesansens 98
5.9.4. SCeNArio REQUESTScoouoiiiiiiiiiiiiriiretcceccicet sttt ettt ettt ettt 100

59.4.1. Structure and Mechanics of the ReqUEStcceueueiiuiiiinnnniccccccceeeennes 100

5.9.4.2. Selection of the Authentication Procedure / Secure Data Access Variant 101

5.9.4.3. Request for the Secure Data Access Keyccoooiiiiiiiiiii 101

Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

Contents

59.4.4. Request for the Action on the Secure Data Access Key ..., 102
5.9.4.5. Request for the Certificate Chain for Passive Authentication Procedure 102
5.9.4.6. Request for the Certificate Chain for Terminal Authentication Procedure................ 103
5.9.4.7. Request for the Digital Signature of the Challenge for Terminal Authentication

PIrOCEAUTE. ...ttt sttt 103

5.9.4.8. Request for the Status of the Terminal Sector Identifier for Restricted Identification
PrOCRAUIE.......ooviitiic e 104
6. SDK SOFTWARE TOOLSc.coiiiiieieieirriitcee ettt 105
6.7, EXPORTED FUNCTIONS......c..coutiititiiitiiteeteett ettt ettt eateat et et st et e bt eh e eat et et et et e bt ebeeateat et et e besbesbeeueeneentens 105
6.1.1. _RFID_INITIAIZE() veoveeveeeeeeeee ettt et ettt e et ettt et et e et e eteeseersens et eseeseeseeseereensensenee 105
6.1.2. _RFID_FIEE() c.eveiieieiiciiiciei ettt 105
6.1.3. _RFID_SetCallDaCkFUNC() c.veveeveereereeeeeeeeeeeeeeeee ettt ettt a ettt et eaeeteeseeaeere e s ennenes 106
6.1.4. _RFID_EXECULECOMMANA() .ttt ettt ettt et e e ae e s steesaaeesaaeesaeeeaeesnneeanes 106
6.1.5. _RFID_Ch@CKRESUIL() ...ccvviiiiiiiiiiciiic e 107
6.1.6. _RFID_CheCkRESUIFIOMLIST() c.veiieviiieeiiiiiieeeeetee ettt ettt ettt et e et e ssaeesaessaeseaeeenns 108
6.1.7. _RFID_LIDraryVersion()cccceeeeeeeuirieieieisieterteteeste ettt ettt s et sttt se e aese e esene 110
6.1.8. _RFID_UI_HelPer_INIHIaliZE() «.oveoveveeeeieerieeiieieii ettt esene 110
6.1.9. _RFID_UI_HEIPEI _FrEE() eveueieeeuiieieiiirieetisieter ettt ettt ettt sttt e st e s e et enenesens 111
6.1.10._RFID_UI_Helper_ManageSetupP()ccecerrererriereririetirerieieenieiesesieseesieseestesenesseresesseseessesesessesenessene 111
6.2. CALLBACK-FUNCTIONcouiiiiiitiiiiii ettt ettt ettt b e e bt e bt e at et et et et e ebeebeeateat e b entebesaeebeeaeeneentens 112
6.3, STRUCTURESoitiiitietieteeiteut et e testeeteeueeutea b et e tesbesbe e bt eueeateat e beas et eebeehteateaten s et e beabeebeeateatensebebesbeebeeaeeneentens 113
6.3.1. TResultContaineTList.........cccceviiiiiiiiiiiiiiiii s 113
6.3.2. TReSUItCONLAINETcoviviviiiiiiiiiiiiiii s 113
6.3.3. TDOCBINATYINO ...ttt 114
6.3.4. TBINATYDAtac.ooiiiiiiiiiiiicc 114
6.3.5. TDocVisualExtendedInfo...........ccoviiiiiiiiiiiiiiiicccc s 115
6.3.6. TDocVisualExtendedField ..o 115
6.3.7. TDOCGraphicSIN oc.ceuiuiiiiiiiiiiiiiii s 117
6.3.8. TDOCGraphiCFieldcccoiuimiiiiiiiiiiiii s 117
6.3.9. TRaWwImMageCONtaineTccccoeuiviiiiiiiiiiiiiccc e 118
6.3.10. TOriginal RFIDGIraphicCsINfo ... 118
6.3.11. TOriginal RFIDGIaPRICSc.cucuimiuiiiiiiieieicicc et 119
6.3.12. TRFID_CardPropertieSEXtccccoviiniiiiiiiiiiiiiiiiicc s 120
6.3.13. TRFIDCAIAPTOP ..ottt 121
6.3.14. TRF_EFCOM......cocoiiiiiiiiiiiiinii st 122
6.3.15. TRF_FT_STRING......c.cooiiiititiiiiieecctn sttt sa s 123
6.3.16. TRF_FT_BYTE.......ciiiiiiiiiiiictc ettt 124
6.3.17. TRF_FT_WORD......c.cootimrmiiiiiiicce ettt 125
6.3.18. TRF_FT_NUMBER........cceciiiiitiiiiiiininric s 125
6.3.19. TREF_FT_BYTES ..ottt 126
6.3.20. TRE_EF_DIGL ..ottt 126
6.321. TRF_EF_DIG234cooooiimimiiiiiiiciee ettt 128
6.3.22. TRF_EF_BIT ...oouotiiiiiiiiiiiiic st 129
6.3.23. TFACIAIBDIB........coovoiiiiiciii e 131
6.3.24. TFacIalRECOIA ...t s 131
6.3.25. TFACIAIINSO. c...coviiiiiiiiiii s 132
6.3.26. TPOSEANGIE ..ottt 133
6.3.27. TFeAtUTEPOINE ..ot 134
6.3.28. TFacialImageInfo.......coeueuiucuiuiiiiiie et 134
6.3.29. TFINGEIBDB.......cooviiiiiiiiiiii e 136
6.3.30. TFINGEIRECOTT ...t 137
6.3.31. TFingerMinutiaeBDBi..........cccoiiiiiiiiiiiiiiccc s 138
6.3.32. TFingerMinutia@ReCOTdcooviuiiiieieii e 139
6.3.33. TONEMINULIA. c..vcvcviriiiitieetc et 140
6.3.34. TMINUHAEEXtDAtAcooveiiieei e 141
6.3.35. TMinutiaeRidgeCountDataccccccviviiiiiiiiiiiniiiiii e 142
6.3.36. TRIAGECOUNTDALA ..ot 142

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 5

Contents

6.3.37. TCOTEANADEIEADIALAc.vveeeveieeteeeetee ettt ettt e et e eete e eeteeeeteseeteeenteseesseeteseesesensesensesensesenseeens 143
6.3.38. TCOTEDIALAuveeeeeeeee e et e ettt e e e et e e e e aaee e et taaeeeeateeeeeaasaeeeteaeeennreeeeenaeeeenaraeeans 144
6.3.39. TDEIEADALAcoovvieeeeeeeeeeeeeeee ettt ettt e et e et e et e et e e te e eeae e e te e eeteeenteeeeteeenteseeareeeteeeenaeenreen 145
6.3.40. TZonalQualityData...........ccccoviiiiiiiiiiiiiii s 145
6.3 4T.TIFISBIDIB ...ttt ettt et e e e et e e te e e tae e beeeesaeebesesseensesessaensesesaeensasenseeeseseseeens 146
6.3.42. TEYERECOTA.c.oiiiiiiiiiiciii bbb 147
6.3.43. TIFISIMAZEoveeiiriiicte e 148
6.3.44. TRE_EF_DIGBOT ...ttt ettt et et eete e ete e aeetaessaessa e seeaseeateessasseenseentesnsesssesssensseseenseenns 149
6.3.45. TRE_EF_DIG8IT0ccuiiiieieeieetteeteeeie ettt et eteeteeaestaestaesseeseeaseeaseessasseensaensaensesnsesssesssenseenseenns 150
6.3.46. TRE_EF_DGIT ..ottt ettt et ettt eete s e taeetesetaeeabasesseensasessaensesesseesesessesnseseseeens 151
6.3.47 . TRE_EF _DGI2 ..ottt ettt ettt eette et eetteeeteeeeteeetes e taeeteseesaeesesesseensesesseenseseseeensesessesnsessseeens 152
6.3.48. TRF_EF_DG_BINARY_ARRAY ..ottt ettt ettt et et eeteeeeteeeetaeeeteeeesaeevesesaeebasesaesnressseeens 153
6.3.49. TRE_EF _DIGIOocviiiieieeeeeteecteecteeete ettt ettt eteeve e eaeetaessaessaeseeaseeaseessasseenseensesnsesssesssenssenseenseenns 154
6.3.50. TRE_EF_PERSOINocooiiitieiiitiiiteeete et ettt et eteete e aessaesseesseeeseeaseenseessesseenseenseensesnsesssesssesseeseenns 154
6.3.51. TRE_AUtNENtIfICATIONvecvieteectiecieeeie ettt ettt et te et esreeereeeeeae e e e be e beeabeeaseensesasesssesseenseenns 155
6.3.52. TPassive AUthentiCatioNDAataccuiciiieiiiiiiiciee ettt et ete e eeteeete e eeteeebeeebeeebeeesneens 157
6.3.53. TRF_SOD_DG_DiEStcuriiiiiiiiiiiiiiiiiiciiict e 158
6.3.54. TRF_SOD_SIgNeTINfOccoiiiiiiiiiiiiiiiiicii s 158
6.3.55. TREF_SOD _COItIfICAE ...ecuvieeeeiierieeeeeetie et ettt ete et ete et eeete s eeaeeeeteseesesessesessesenseseeseseesesessesenseeas 159
6.3.56. TMIFARE_KeYTabIe.........ccocooiiiiiiiiiiiiiiiiiiiccec s 160
6.3.57. TRF_EID_TEXT_ARRAY ...ttt ettt et e e et eeveesveesveessaesnsaessaessaeenssaensasessansseesssessees 160
6.3.58. TRF_EID_GENERAL_PLACQCEoootiieeeeteeteettettettete et e teste s veesaeeaesaesraesseesseessasssesssessnessnesseenes 161
6.3.59. TRE_EID _TEXTuttotiieeieeetee ettt et ettt eete e et e et e eetaeeeteeeetaeeteseesseebeseesseenseseseeeseeensseenseseseeens 162
6.3.60. TRF_EID_OPTIONAL_DATA ...ttt eteete st s e esaeeaeeaesvaesvaesssessaessasssessnessnessnanes 163
6.3.61. TRF_EID_OPTIONAL_DATA _ITEMoiitioietteeeeeeeeeeeteeete et ettt et et v e eaeeae e aeeeneenns 164
6.3.62. TRFID_AntennaParamiSPaircooviiieeiiieeeiee et eeeeee et eeeteeeeeereeeeeaaeeeeeteeeeensneeeennneeeeenseeeeenes 164
6.3.63. TRFID _ANtENNAPATAINISovviiieireeieeieeeeeeee et eeteeeeeeeeeeeeeeeeeeteeeeesareeeensnseeeenseeeeensseeeennneeeeenseeeennes 165
6.3.64. TCUSTOMRAWDATALISTveetiiiiieeiie ettt ettt et e eete e eeteeeteeeebse e beeebeeeseeesseeteeeseeens 165
6.3.65. TCustomRawData / TCustomRawDataTOPaISe.ccuiieuiiiiiiieie ettt e e ens 165
6.3.60. TREID _SESSIONecveevieeiieeieeiesitesieeseesteetestesseesseesseesesssesssesssesssesseesseasesssesssssssessesssesssesssesseesssessesnes 166
6.3.67 . TRFID_APPLCALION.......cviiiiiiiiiiiiicicccccci et 169
6.3.68. TREID _DAtAFILE.......cccueeiieiieeieeiieeteeeie ettt ettt eete et e v et eeteeeteeeaeeseeaseeseeese e beeateenseesseessessseseenseenns 170
6.3.69. TRFID _ACCESSCONITOIINTO ...veiiuviiieeiieeiieceieetie ettt et ettt e et s et e eeteseesesenseseeneseeseeeesneenseeas 172
6.3.70. TRFID_AccessControl_OPHion........cccciiiiiiiiiiiiiiiiccccicce e 174
6.3.71. TRFID_SeCUTTtyODJECE......cuiiiiiiiiiiiiiicii e 175
6.3.72. TRFID_SignerINfo_EX........ccccooiiiiiiiiiiiiiic e 177
LRIV T N o1 D R Q=) o1 4 1= < i U 178
6.3.74. TREID _ItEIMS_LLIST ..eeeiuiiiitiieitieeiiieeciteeeteeetteeeteeeteeeteeete e e taesteeesaeebaeessaesssasassesssasesseesaeessesseseseenns 181
6.3.75. TRFID_DistinguisShedINamMEc.coeiiiiiiiiiicc e 181
6.3.76. TREID_AttriDULE_INAINIE.ccuvieeiiciieiieieeic ettt e it et este e reesaeeae e e e ssaessaesseesseessesssesssessnesseanes 182
6.3.77 . TREID _AHIIDULE _DAta...ueecouiiiiieeiiiieieeceiee ettt ettt et eeteeeeteeeetaeeteseetaeeetaeeesseenseeenseeens 182
6.3.78. TRFID_Validityccoiuiiiiiiiiiciiiic e 183
6.3.79. TRFID _PKI_EXEEINSION ...uveeeviiiitieeitieeiiieeieeesiteeeteeeeteeeteeeetaeeveessaeeseeesaesssesessesssesaseesssesssssssesssseenns 183
6.3.80. TRFID_REVOCAHIONINLO.....ciiuiiiieietieectiecetie et etes et eetee et ettt e et s eeaeeeseseesesensesesesenseeesesesesenneeens 184
6.3.81. TREID _CRL_EX ..ieittteetiieitieeeiieeiteeiteeestteeetteesteesteeesteeeteeessaesseeassesssasessesssesassasssesassessesassessesssseenns 185
6.3.82. TREID_ACCESSKEYocuiiitiriiiitiicictiecte ettt an 186
6.3.83. TREID_TEITNINALueecvieiieieeiecieieecie ettt e et ste et e e e e aeeaeseaesveesseesaeessesssesssesssasseensesssesssessnesseanes 187
6.3.84. TRFID_eSignKeyParameters ..ottt 188
6.3.85. TRFID_eSignPINParameters...........ccccocoiviiiiiiiiiiiiniiiiiiccscessesss s 189
6.3.86. TRFID_APPLication]Dccccciviriiiiiiiiiiiiiiiiiice e 189
6.3.87. TREID_FILEID......ccttietie ettt ettt et ete e et e et e e taeebe e etaeeasasensaeessasesaasnsesessaesasasenseesnsesanseeans 189
6.3.88. TREID _FIIESLLIStcueectieiieieeiecitecteeste ettt ettt ettt e et e it e st estaesseeseesaeesaeeseesseesseenseessesssesssesssenseanns 190
6.3.89. TRFID_FileUpdateData..........c.cccovuiuimimiiiiiiiiiiiiicicsc s 190
6.3.90. TRFID_AccessCONIIO]_PaTammS.........coveeuiiiieiieiiecieeieeieeteeee s steesteeaeeteeeesseesseesseesesssesssessnessnanns 191
6.3.91. TTerminal AuthenticatioNStEPDALac.ccvcvriririririiiiiciiii e 191
6.3.92. TTerminal VerifiCatioNData......c..ccueiuiiirieeieeieeeeereeeteecte ettt ettt eereeeveeeeeeteeeteeebeeteeseenseenseensesseenns 192
6.3.93. TPACE_SetupParams..........ccccccvviriiiiiiiiiiiiiiiiciises s 193
6.3.94. TCA _SetupParams..........cccceeviiriiiiiiiiciiecce sttt nn 193
6.3.95. TTA_SetUPParamSccooveuiiiiiiiiiciiic sttt an 193

Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

Contents

0.3.96. TP A _PATAINIS ..cooontreriieeieeeetieeee ettt e e e e eeeetae e e e e eeeeeabarereeeeeeesssaseeeseeesesssssasseeeesessssassseeesennssssseeeens 194
6.3.97. TRI_SEtUPPATAIMSooviviiiitiiicictct st ene e 194
6.3.98. TRE_EDL_DGI ..ottt 195
6.3.99. TRECRhIPPIOPETILIES ...t 196
6.4. ENUMERATIONSooomimiiiiiiiictitete ettt ettt a bbbt a st a et s s s s s aea s aees 200
6.4.1. eRFID_RESUITYPEcoviviiiiiiiiiiiicct e 200
6.4.2. eRFID_DataGroUps.....ccccvuiuiiiiiiiiiiiiiiiiicei et 200
6.4.3. eRFID_DataGroupTyPeTag. ... 201
6.4.4. €RFID_TYPE w.cvoviitiiiiictictc ettt en e 202
6.4.5. €RFID_A_CRIP ..ottt 202
6.4.6. ERFID_BaAUARALEcceieviiieeiecteceeeeeeete ettt ettt ettt et et e a e s te s te e aeeateeaseeasasssebeenbeenseennesanenes 203
(X = @ 31 2 Sl S =) a o L<) R 203
6.4.8. @CBEFF_EYECOIOT ...ttt 203
(SN BTG 31 20 33 S 5 = V0 S o) Lo) R 204
6.4.10.eCBEFF _FaceFeatureMasK.........cceccveeuieiuiiiiieiecieceeeteeeteete ettt teeeae et eee et e seebaenbeeseeaesanennas 205
6.4.11.eCBEFF_FacCeEXPIeSSIONcccoviuiiiiiiiiiiciiiicicictcc s aen e 205
6.4.12.eCBEFF_FaceImageTyPe.......ccccciviiiiiiiiiiiiiciiinicitcccccn s en e 206
6.4.13.eCBEFF_FaceImageTypeFDIS..........cccocoviiiiiiiiiiiicc s 206
6.4.14.eCBEFF_ImageDataTyPe ... s 207
6.4.15.eCBEFF_IMageColOrSPace ..o s 207
6.4.16.eCBEFF_ImMageSourceTyPe.. ...t 208
6.4.17.€CBEFF_BiometriCTYPe.cooviiiiiiiiiiiiciiiicccicc s 208
6.4.18.eCBEFF_BiometricSUbTYPeMaskcccccciiiiiiiiiiiicciinncc s 209
6.4.19. @CBEFE_FOIMAtOWINETSuviiiuiietieeeiiecetie ettt eeteeetveeeteeetteeereeeseeestseeesssesseeessseseseeesssesassessseesseesnseess 210
6.4.20.eBIT_SecurityOPtions......ccceviviiiiiiiiiiiicicicc s 210
6.4.21.eBIT_INtegrityOPtionS......ccceuiviiiiiiiiiiiicic s 210
6.4.22. eCBEFF_FOrmatTyPesccooviiuiiiiiiiiiiiiccccccc s 211
6.4.23.eCBEFF_ImageCompressionAlZOrithm..........ccccovviiiiiiiiiiiiiiiicccccccce s 212
6.4.24.eCBEFF_FingerPalmPOSitioN..........ccooviriiiiiiiiiiiiiiinicicccceee e 213
6.4.25.eCBEFF_FingerPalmImpression ... 214
6.4.26. €CBEFE_SCalEUINILSoieiviiiiieeeiie ettt ettt e tte et eeveeeteeeetaeeeteeesaveeesseesabeeeaseesbsesaseesebaesnreean 215
6.4.27.eIrisImagePrOPeIties.coiiiiiiiiiicieec e 215
6.4.28.elrisImageFormat ..o 216
6.4.29. elrisImageTransformation ..o 216
6.4.30. €IFISSUDLYPE ... 217
6.4.31.eMinutiaeExtendedDataType........cccccoviiiiiiiiiiiiiiiic s 217
6.4.32.eRidgeCountExtractionMethodccccoeiiiiiiiiiiiiii s 218
6.4.33.CDOCFOIMAL ...ttt 218
6.4.34.eRFID_ViSUaAIFIElATYPEcvcumiieiiiiiicicccc e 218
6.4.35.€VISUALFIEIATYPE ...cevueiiiiiiicicciirr e 220
6.4.36.€GraphiCFieldTYPE .cccovoviiiuiiciiiiic e 222
6.4.37. eMIFARE_KeYMOdE.......c.couimimiiiiiiiiiiiiiic s 222
6.4.38.€0UtPULFOIMAL ..ot 223
6.4.39.eOutputFormatField ... 223
6.4.40.€RFID_RESUILSTATUS ...oveeoveiiieieetie ettt ettt eeteeeeaee e et e e eae e e esaeeeaesessaeseseeesssesenteesnsesenseesnseeenteean 224
6.4.41.eRFID_NoOtIfICAtiONCOAESooveiirieeeie ettt ettt ere e eaae e raeeesaeesneesesteeensesentessnresenseean 224
6.4.42.eLDS_ParsingErrorCodes ... 229
6.4.43.eLDS_ParsingNotificationCodes............c.cooeiiiiiiiiiiiiicicic 239
6.4.44.eRFID_EITOTCOAESc.oiiiiiiiiiiiiiici s 261
6.4.45.eRFID_CONtrolRF........cociiiiiiiiiiiiiiiiii s 271
6.4.46.eDataProcessingLevel............ccociiiiiiiiiii 272
6.4.47.eRFID_AuthenticationProcedureType.........ccccoiiviiiiiiiniiininiiiiiiias 272
6.4.48.eRFID_PasSWOTd_TYPEc.cucuemimiiiiiririeieiciccicii ettt eaes 272
6.4.49.eRFID_TerminalTyPeccccciiiiiiiiiiiiiiiic s 273
6.4.50.eRFID_Terminal AuthorizationRequirement.............ccoooeuiieiiiiiiinicce e, 274
6.4.51.eRFID_FIleID_TYPE ...ccvvviiiiiiiiiiiiiiiiiiniic st 275
6.4.52.eRFID_AccessControl_ProcedureTyPe ... 275
6.4.53.eRFID_Terminal AuthenticationTyPe.......ccocvviniiiiiiiiiiiniiiiis 276
6.4.54.eRFID_AuxiliaryDataTyPecccoiiviniiiiiiiiiiiiiiccicccc e 276

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 7

Contents

6.5.

6.4.55.eRFID_SectOrKeYTYPEcuoviiiiiiiiiiicitcc st 276
6.4.56.eRFID_Application_TYPeccouviiiiiiiiiiiiiiiiniiiccc e 277
6.4.57.€RFID_DataFile_TYPecccocoiiiiiiiiiiiiiiiiiii s 277
6.4.58.eRFID_CertificateOriginccccoviiiiiiiiiiiiiiiiiciic s 279
6.4.59.eRFID_CertificateTyPeccoiuiiiiiiiiiiiiiicic s 280
6.4.60.eRFID_PasswordManagementACtiON..........ccceiiiiiiiiiiiiiiiicccce s 280
6.4.61.eRFID_PasswordPostDialogACHON.c.ccciiviiiiiiiiiiiicciiic s 281
6.4.62.eRFID_Terminal AuthenticationToSignDataType........ccccvviviviniiiiiiiiiiiiiniiccccccce 282
SDK COMMAND SYSTEM (ERFID_COMMANDS)..........ccoeitiiiieiieieetteetteeteeeteereeeeereesseeseeveesessesanesssesseenseenns 283
6.5.1. RFID_Command_Get_AvailableGraphicFormatsccccoceviviiiiiiiiinnnninicccccccenes 285
6.5.2. RFID_Command_Get_DevIiCECOUNLEcoovueiiiieeieeeieeee e eeeeeeeeeee e eeeeeeeeesaeeeeeenaeeesesaeeseseeeeenns 286
6.5.3. RFID_Command_Get_CUITeNtDOVICEcoouviiiiiueieeeeeee e eeeeee et eeeree e e e eeaeeesessaeessnaeeeseans 286
6.5.4. RFID_Command_Set CUITENIDEVICEccooueiiiieeieeeieee et eeeeeee et eeeee e e e eenaeeeseaaeeseareeeeans 286
6.5.5. RFID_Command_Get_DeviceFirmware€VerSiOnc..cceeeeeueeereecieeieeieereeereecreereeeeseeeveesseesseenns 286
6.5.6. RFID_Command_Get_DeviceDesCriptioncccccecuiuiiiiininininiiiiiiiiiiiiiincecccsccees 286
6.5.7. RFID_Command_Get_DeviceDIivVerVerSiOn......cccciicuieeeeienierieeieeeeeeeereeereeereeseeeesnesseesseesseenns 287
6.5.8. RFID_Command_Get_DeviceINStancelDoooueeivoviiiiieiiiceeeeeeeeee e eeaeeesenaveee e 287
6.5.9. RFID_Command_Get_ParentINStancelDcccocoviiiiieiiiiiiieeeee ettt et eeteeeeveeeetee e veeeeaneens 287
6.5.10.RFID_Command_Get_DeviceHardwarelDcccoooieeiiiiiieeciiceiieciee et e e vee e ens 288
6.5.11.RFID_Command_Get_CodeTranscription...........ccccccecuiiiininniniiiiicicciiininreeeeeccccceeeeens 288
6.5.12.RFID_Command_SelectDeviceByName.............ccccceuiuiiiiiinnininiiiccccccninceeeecccceees 288
6.5.13.RFID_Command_SelectDeviceBYSNcccoviiiiiiiiiiiiiiiiiicccccccceeee s 289
6.5.14.RFID_Command_Get_DeVICESNccouiieiieeiiiiieeeieeeeeeeeteeeeteeeeteeeeteeeeteeeesseeeseseeseeeeseeessseeesesseseeens 289
6.5.15.RFID_Command_BuildLoOg.........cccccuiiiiiiiiiiiiiiiiiciccee e 289
6.5.16. RFID_Command_FIUShLOG..........cccocuiuiiiiiiiiiiicicic s 289
6.5.17.RFID_Command_LOgDITeCtOrYcccccciiiiiiiiiririiiiiciiiiiiririecescceecccee s 289
6.5.18.RFID_Command_Set_CheckResultHeight...........cccccceuiuiiiiiininiiiiiiiiiccccccccee 289
6.5.19.RFID_Command_SetCryptKey ..o 290
6.5.20.RFID_Command_GetCryptKey ... 290
6.5.21.RFID_Command_SetMIFARE_KeyModeccccciviiiiiiiiiiiiiiiiiiciicccce e 290
6.5.22.RFID_Command_GetMIFARE_KeyModeccccccoiniiiiiiniiiiiiiiiincceencceec e 290
6.5.23.RFID_Command_SetMIFARE_KeyTable...........cccccccceuiiiiiiniiiicciciineeccccceeees 290
6.5.24. RFID_Command_GetMIFARE_KeyTable............ccccccceiuiiiinnniniiiciiicincceccccceeees 291
6.5.25.RFID_Command_Set_OperationalBaudRate............ccccocoevivrininiiiiiiinnrccccccceceeeees 291
6.5.26.RFID_Command_Get_OperationalBaudRate.............cccccoviiiiniiiiniiiiniiiiicicccccnccnes 291
6.5.27. RFID_Command_Set_PassiVEPKDcccoccuiriiiieiieiecieeieseeseete ettt veesvesaesae e saeenns 291
6.5.28. RFID_Command_Get_PassivVePKDcccciriiiieiiieiecieeieseeseeie ettt svee e esveessessesaessnesseenes 291
6.5.29.RFID_Command_Set_ EAC_PKDooiieee ettt eetee et s eeseseevesesaesensessnsessressnsneens 292
6.5.30.RFID_Command_Get_EAC_PKDcoouiiiiiiieeeee ettt eeteeeetee et et s eeaeseevesesaesessesensesssessneeens 292
6.5.31.RFID_Command_Get_ReadCardProperties ... 292
6.5.32.RFID_Command_ReadCardPropertiesEXt...........cccoviiiiiiiiiiiiiiiiiicccccccecees 292
6.5.33.RFID_Command_ReadCardPropertiesEXt2............ccciiiiiiiiiiiiiiiiiiciccccccceees 293
6.5.34.RFID_Command_ReadProtoCol3ccoccuieiieieiieiieieeteeieseesteesteeste e sveesreesseeseessesssessaessnesseenes 293
6.5.35.RFID_Command_ReadPrOtOCOI4ccuioeueieeiiieeeeeee ettt eetee et e et s eeaeeesreeensesereseneeens 293
6.5.36.RFID_Command_CancelReading..........ccccccvvririririiuiiiiiiiiininrieiceeccccireseeee e 294
6.5.37.RFID_Command_DocUmeENtDIONEoovieeueiiiiieetieeeeeeeetee ettt eeteseereeeeresessesessesensesereseseeens 294
6.5.38.RFID_Command_ISDOCUIMENT...........ccieiieiieieetiecieeieeeeteete st seesaeeae e e sreesseesseesseesesssessaessnesseenes 294
6.5.39.RFID_Command_ParseRamwbDatacccccueeiirrieiieiieieciecieseese ettt svee e veesesaesae s e sseenes 294
6.5.40. RFID_Command_ClearReSUlLScccoccuiiviieiiiiiiieeieeieeteeteste sttt ee e sveeveeaesaesvnesanesreenns 294
6.5.41.RFID_Command_Set_DetectioNIMOE.........cocviiuiiieiiicieeeee ettt ettt sveeesaesesaeeeeaeeens 295
6.5.42.RFID_Command_SetDataProcessingLevelc.cccccinniiiiiiinnreececeee e 295
6.5.43.RFID_Command_GetDataProcessingLevelc.cccciirrriniiiiciinrreeceeeeee e 295
6.5.44. RFID_Command_SetTransferBufferSizeooveiieiieiieieceeceece ettt 295
6.5.45.RFID_Command_GetTransferBufferSizecoveiieiieiiiieiieceeecie ettt ee e 295
6.5.46.RFID_Command_SetUserDefinedFilesTOREadc.cccuieieriiiiieieeieeieeeeeieeeee et 296
6.5.47 . RFID_Command_Set_DS_Cert_Priority.........ccccoceueiiiininnrrrcceccccerreeeeeeeeec e 296
6.5.48.RFID_Command_Get_DS_Cert_Priority........ccccoceeiiiininnnricceccccerrseeeeeee s 296
6.5.49.RFID_Command_Set_ TrustedPK KDooouiioiiiiiiiieieieeeeeee ettt ettt eetee v esaeeesvesesessressneeens 296
6.5.50.RFID_Command_Get_TrustedPKDcccooiioiiiiieieeieeteeeceee ettt sae v s ae e sae s 296

Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

Contents

6.5.51.RFID_Command_Session_OPen...........ccccvvuiuiiiniiiiiiiiiiniiiiciiieesessssesss s 296
6.5.52. RFID_Command_Session_Select Applicationccccceiiiiiiinininiiiiiiiinncccs 297
6.5.53.RFID_Command_Session_AccessSCONLIOIPTOCccuveevieiiieiieiecieecteeete et eere e reeeae e eeis 297
6.5.54.RFID_Command_Session_ReadFilecc.cooieuiiiierieciiiieeieeieeeeeeeete ettt e 297
6.5.55.RFID_Command_Session_ PA_CReCKSO ...ttt eere e ssaae s saveeeens 297
6.5.56.RFID_Command_Session_PA_CReCKFILE.........coouiiiiiiiiceeeeeee et eeeee e eaneeeea 297
6.5.57. RFID_Command_SeSSION._ ClOSE.........couvueeiiiieieieiieeeeeeeeeeeeeeeeeeteeeeeaeeeeesaeeeseaveessssseesssanesssnsneeeens 298
6.5.58. RFID_Command_Session_ReadMIfare...........ccceevuiereeeuieeiieciieieeieceecteeeee ettt eeve e sae e 298
6.5.59.RFID_Command_Session_SetAcCesSKEY ... 298
6.5.60. RFID_Command_Session_SetTerminalType ..o 298
6.5.61.RFID_Command_Session_SetProcedureTypecccviiviniiiiiiniiininiiiiiiiccincccceeens 298
6.5.62.RFID_Command_SesSion__ WITtEFILEcoovuviiiiiiiiieeeee et aneeeea 299
6.5.63.RFID_Command_Session_VeTify ..o 299
6.5.64.RFID_Command_Session_Password_ChangePIN............ccccccooinniniiiiinnnniicccccne 299
6.5.65.RFID_Command_Session_Password_ChangeCAN...........cccvvnininiiniiiininnnnccccecans 299
6.5.66.RFID_Command_Session_Password_UnbIOckPINcccccoevieiiinieieeeiecieeeeereeereeve e 300
6.5.67.RFID_Command_Session_Password_ActivatePINccccccoveuiiiiiieiiiiieeeeeeeeeeeeeeeeeereeeeaveeeens 300
6.5.68.RFID_Command_Session_Password_DeactivatePIN..........ccccccevveeiiriiiiieeiiecieeeree et 300
6.5.69.RFID_Command_Session_PA_IsFileCheckAvailable..........ccccccoovieiiiiiiiiieiiiiieeeee e 300
6.5.70.RFID_Command_Session_eSign_CreatePINccccccoeiiiiinininininiiciiiieeeeeeceecens 300
6.5.71.RFID_Command_Session_eSign_ChangePINccccccocoiiiiinniniiiiiiinneeeeeeecns 300
6.5.72.RFID_Command_Session_eSign_UnbIockPIN ... 301
6.5.73.RFID_Command_Session_eSign_TerminatePIN...........ccccccoiiiiniiiiiiiiniiiiiiiccinccieens 301
6.5.74.RFID_Command_Session_eSign_VerifyPIN........ccccoiiiiiiiiniiiiiiiccciecnceeneeens 301
6.5.75.RFID_Command_Session_eSign_GenerateKeyPair............ccccconiiiiiiiiiiiinniiiiincciccn, 301
6.5.76.RFID_Command_Session_eSign_TerminateKeyPair............ccccoviririeiiiininnnnniiccccccne 301
6.5.77. RFID_Command_Session_eSign_SignData..........cccoeuvuiuiiiiiininininiiicciineeeeceeceas 302
6.5.78. RFID_Command_Session_LoadDatac.cooueeeeeieeieeeieceieeeeeeeeeeee e et s ente et e eaeseveeeneeean 302
6.5.79.RFID_Command_Session_SaveData.........ccecoueeeiiiiiieeiieeieeeee et ereeeeeeeeveeeveeeeveeeveesvaeeareean 302
6.5.80.RFID_Command_Get_ProfilerTyPe.........ccocviiiiiiiiiiiiiiiiiiiiicciicc e 302
6.5.81.RFID_Command_Set_ProfilerTyPe ..o 302
6.5.82.RFID_Command_Get_DefaultPACEOPHONccvuviriiiiiiiiiiiiiniiccccccce s 303
6.5.83.RFID_Command_Set_DefaultPACEOPHON........ccocouviiiiiiiiiiiiiiccccccccc s 303
6.5.84.RFID_Command_SCeNario_PTOCESScuueeievueeieeeeee et eeeeeeeeeaeeeeeeeeeeeeneeeeenneesennneeeens 303
6.5.85.RFID_Command_Set_OnlineTAToSignDataType ... 303
6.5.86.RFID_Command_Get_OnlineTAToSignDataType ... 304
6.5.87.RFID_Command_Set_Graphics_CompressionRatio...........cccoceiriiiiniiiiiiiiininiiiicciccinceens 304
6.5.88.RFID_Command_Get_Graphics_CompressionRatio...........cccccevvvrireeueiiiiinnnnrecccecccees 304
6.5.89.RFID_Command_UseDeviceDriverLog ... 304
6.5.90.RFID_Command_Session_LoadData_Reparsecccccccciiinininiriniicciciiiirreeceeeccenes 304
6.5.91.RFID_Command_Set_USeEXternalCSCAccioiieiieieceeteeteeteseeste et et e sre e ve e aeeae e ses 305
6.5.92. RFID_Command_Get_USeEXternalCSCAccouieieeieeeeieeieeeeeeese ettt sreesve e aeeae e ses 305
6.5.93.RFID_Command_Set_TCC_ParamiSccceeeueeruirereeerieenreerieereeseseesseesseesessesssesssessesssesssesssessnesnes 305

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 9

Contents

10 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

LIST OF ABBREVIATIONS

AA -

AT -

BAC/BAP

CA -

CAN -

CHAT -

DO -

EA -

EAC/EAP

EPROM

eSign-
PIN -

LDS -
MCL -

MRZ -

Active Authentication — a procedure of additional verification of document
authenticity (compliance of the read SO with the original chip)

Authentication Terminal — terminal type
—Basic Access Control/Protection — data access control security mechanism

Chip Authentication — a stage of an advanced security mechanism of data ac-
cess control (EAC)

Card Access Number - a short password printed on the document; it is used
as a key to control access to protected data

Certificate Holder Authorization Template — data object containing identifier of
terminal type and combination of flags of access rights to informational and functional
capabilities of electronic document, delegated to the terminal by the superior subject

Document Owner

Effective Authorization — determination of combination of access rights to in-
formational and functional capabilities of the electronic document according to
the results of terminal authentication procedure

—Extended Access Control/Protection — advanced security mechanism of data
access control

Erasable Programmable Read-Only Memory

Personal Identification Number for eSign Application — a short secret
password, which is known only to the document holder; it is used as a key to the
function of digital signature generation

Inspection System — terminal type
Logical Data Structure
SDK Main Control Library

document Machine Readable Zone used as a key to control access to pro-
tected data

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 11

List of Abbreviations

OCR — Optical Character Recognition

oS — Operating System

PA — Passive Authentication — a security mechanism of RFID-chip data integrity
verification

PACE - Password Authenticated Connection Establishment — data access control
security mechanism

PC — Personal Computer

PIN — Personal Identification Number — a short secret password known only to the
document holder; it is used as a key to control access to protected data

PKD — Public Key Directory

PUK — PIN Unblock Key — a long secret password known only to the document holder; it is
used as a key to control access to protected data

RFID - Radio Frequency Identification

RFID-

chip — Radio frequency identification chip

RI — Restricted Identification — a procedure of chip identification within the context of
a certain terminal sector

SAC — Supplemental Access Control — an advanced security mechanism of data ac-
cess control using PACE as a basic mechanism of SM

SAIl — Scanning Area ldentifier — a password printed on the document (as a text
field, a bar-code or a special MRZ); it is used as a key to control access to pro-
tected data

SDK — Software Development Kit

SM — Security Messaging — a mechanism of protected data exchanging

SO — Security Object — an object of electronic document data protection

ST — Signature Terminal — terminal type

sw — Software

12 Version 3.5 RGVL.00010-0133 01 © Regula, 2021

List of Abbreviations

TA — Terminal Authentication — a stage of an advanced security mechanism of da-
ta access control (EAQ)

uT — Unauthenticated Terminal — terminal type

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 13

REFERENCES

[1]

[2]

BSI. Technical Guideline: Advanced Security Mechanisms for Machine Readable Travel
Documents — Extended Access Control (EAC), Version 1.11. TR-03110, 2008.

ICAO. Machine Readable Travel Documents — Part 1, Volume 2: Machine Readable
Passports, Specifications for electronically enabled passports with biometric identifica-
tion capabilities, ICAO Doc 9303, 2006.

ICAO. Machine Readable Travel Documents — Part 3, Volume 2: Machine Readable Of-
ficial Travel Documents, Specifications for electronically enabled official travel docu-
ments with biometric identification capabilities, ICAO Doc 9303, 2008.

ITU-T. Information Technology — ASN.1 encoding rules: Specification of Basic Encoding
Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER).
X.690, April 2002.

RFC 3279. W. Polk, R. Housley, L. Bassham, «Algorithms and Identifiers for the Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile», April 2002.

RFC 5280. R. Housley, W. Polk, W. Ford, D. Solo, «Internet X.509 Public Key Infrastruc-
ture Certificate and Certificate Revocation List (CRL) Profile», May 2008.

RFC 3852. Cryptographic Message Syntax (CMS), July 2004.

RFC 3447.). Jonsson, B. Kaliski, «Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications, Version 2.1», February 2003.

RSA Laboratories. PKCS #3: Diffie-Hellman Key Agreement Standard. RSA Laboratories
Technical Note, Version 1.4, 1993.

RSA Laboratories. PKCS #8: Private Key Information Syntax Standard. RSA Laborato-
ries Technical Note, Version 1.2, 1993.

BSI. Technical Guideline TR-03111: Elliptic Curve Cryptography (ECC) based on ISO 15946,
Version 1.0, 2007.

BSI. Technical Guideline TR-03105, Part 5.1: ePassport Conformity Testing. Test plan
for ICAO compliant inspection systems with EAC. Version 1.2, 11.09.2009.

ISO/IEC 19794-2:2005, Information technology — Biometric Data interchange formats —
Part 2: Finger minutiae data.

ISO/IEC 19794-4:2005, Information technology — Biometric Data interchange formats —
Part 4: Finger image data.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 14

References

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

ISO/IEC 19794-5:2005, Information technology — Biometric Data interchange formats —
Part 5: Face image data.

ISO/IEC 19794-6:2005, Information technology — Biometric Data interchange formats —
Part 6: Iris image data.

NISTR 6529. Common Biometric Exchange File Format (CBEFF).

ISO/IEC 14443-3, Identification cards — Contactless integrated circuit(s) cards — Proxi-
mity cards — Part 3: Initialization and anti-collision.

ISO/IEC 14443-4, Identification cards — Contactless integrated circuit(s) cards — Proxi-
mity cards — Part 4: Transmission protocol.

ISO/IEC 7816-4, Identification cards — Integrated circuit cards — Part 4: Organization,
security and commands for interchange.

PC/SC Workgroup. Interoperability Specification for ICCs and Personal Computer Sys-
tems. Revision 2.01, September 2005.

NXP Semiconductors. Application Note: MIFARE Type Identification Procedure. Revi-
sion 3.6, July 2016.

ICAO Technical Report: Supplemental Access Control for Machine Readable Travel
Documents. Version 1.1, April 15, 2014.

BSI. Technical Guideline TR-03110: Advanced Security Mechanisms for Machine Readable
Travel Documents — Part 1: "eMRTDs with BAC/PACEv2 and EACv1", Part 2: "Extended
Access Control (EACv2), Password Authenticated Connection Establishment (PACE), and
Restricted Identification (RI)", Part 3: "Common Specifications”, Version 2.10, 2012.

BSI. Technical Guideline TR-03127: Architecture electronic Identity Card and electronic
Resident Permit. Version 1.13, 2011.

BSI. Technical Guideline TR-03117: eCards mit kontaktloser Schnittstelle als sichere
Signaturerstellungseinheit. Version 1.0, 2009.

BSI. Technical Guideline TR-03105, Part 5.2: ePassport Conformity Testing. Test plan for
elD and eSign compliant eCard reader systems with EAC 2. Version 1.1, 11.05.2011.

ISO/IEC 9796-2:2002, Information technology — Security techniques — Digital signature
schemes giving message recovery — Part 2: Integer factorization based mechanisms.

ISO/IEC 10118-3:2003, Information technology — Security techniques — Hash functions —
Part 3: Dedicated hash functions.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 15

References

[30]

[31]

[32]

[33]

[34]

ISO/IEC 7816-4:2005, Identification cards — Integrated circuit cards — Part 4: Organiza-
tion, security and commands for interchange.

ICAQ. Technical Report — LDS and PKI Maintenance. Version 2.0, May 21, 2014.

RFC 2849. G. Good. The LDAP Data Interchange Format (LDIF) - Technical Specification.
June, 2000.

http://www.icao.int/Security/mrtd/Pages/icaoPKD.aspx

ICAO. Technical Report — CSCA countersigning and Master List issuance. Version 1.0,
June 23, 2009.

ICAO. Supplement to Doc 9303. Release 14, May 13, 2014.

BSI. Technical Guideline TR-03129: PKls for Machine Readable Travel Documents. Ver-
sion 1.10, 2009.

ISO/IEC 18013-2, Information technology — Personal identification — ISO-compliant driv-
ing licence — Part 2: Machine-readable technologies.

ISO/IEC 18013-3, Information technology — Personal identification — ISO-compliant driv-
ing licence — Part 3: Access control, authentication and integrity validation.

Commission regulation (EU) No 383/2012 of 4 May 2012 laying down technical re-
quirements with regard to driving licences which include a storage medium (micro-
chip).

BSI. Technical Guideline TR-03129-2: PKls for Machine Readable Travel Documents.
Protocols for the Management of Certificates and CRLs — National Protocols for
ePassport Application Version 1.12, 2016.

16

Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

INTRODUCTION

The present «Programmers Guide» describes the order of SDK tools usage when develop-
ing user applications for work with «Regula» devices equipped with RFID-chip reader.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 17

SYSTEM REQUIREMENTS

Minimum:

CPU e Pentium IV 2.0 GHz

RAM ..o 512 MB

OS e Windows 2000 (Service Pack 4), Windows XP (Service Pack 1)

SystemBuUSccocvirrirrinnnn. built-in USB 2.0 Hub with full High Speed mode support
Recommended:

CPU e, Pentium IV (Duo Core) 3.0 GHz or higher

RAM ..o 1 GB and more

OS e eee e Windows 7

SystemBuUSooevrreinee. built-in USB 2.0 Hub with full High Speed mode support

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 18

WHAT’S NEW?

Version 3.5:
e transition to the use of OpenSSL cryptographic libraries;
e full support for eDL application data access.

Version 3.4.

e changes made in exported function types (parameters) and SDK structure (all COM-
components removed), in notification callback-function mechanism (being executed
in the inner SDK threads context, main application is responsible for the necessary
synchronization).

Version 3.3:
e provided support for the access to eDL application data without EAP mechanism use
(CA TA).

Version 3.2:
e full support of Integrated Mapping and Chip Authentication Mapping modes of PACE.

Version 3.1:
e added scenario-based mechanism for session work;
e extended format for XML-representation of results.

Version 3.0:
e added functionality to provide full support for EAC (version 2) adn SAC advanced ac-
cess mechanisms;
e provided full support for eTD, eSign application data access and their functionality;
e implemented support for session work with RFID-chips, providing maximum flexibility
for the construction of software logics.

Version 2.1:
e support of national character sets — transfer to representation of text data in UTF8
format.

Version 2.0:
e transition to work according to PC/SC protocol, device driver update;
e EAC support;
e extended analysis of the read data structure and their compliance with standards;
e support for data reading using the extended length commands.

Version 1.4.
e certificate verification added for the passive authentication (general PKD support);
e changes in TRF_Authentification and TRF_SOD_Certificate data structures.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 19

References

Version 1.2:
e added the possibility of the passive/active authentication.

Version 1.0:
e first SDK version.

20 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

1. SDK STRUCTURE

1. SDK STRUCTURE

\<Program Files>\Regula\RFID Reader SDK\:

RFID_SDK.d1ll — SDK MCL;

RFID_SDK UI.dl1l — library for the composition of working XML-scenario;

Imaging.dll — image graphics formats support library (JPG, JPEG-2000, TIFF,
PNG, WSQ, BMP);

RFIDtest2.exe — test application project executable module;

RFIDtest3.exe - demo program;

\<Program Files>\Regula\RFID Reader SDK\FirmwareUpdate\ — utility for de-
vice EPROM re-programming;

\<Program Files>\Regula\Samples\RFID SDK\C++\ —directory of RFIDtest?2
test application project, illustrating the use of SDK software tools for working with elec-
tronic document in batch mode (C++ Builder);

\<Program Files>\Regqula\RFID Reader SDK\Doc\:
Programmers Guide (en).pdf - this Guide in English;
Programmers Guide (ru).pdf - this Guide in Russian.

22 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

2. SDK FEATURES

SDK allows:
e reading data from RFID-chip memory (international standard ISO/IEC 14443) when
working with «Regula» devices equipped with RFID-chip reader;
e performing procedures of passive and active authentication of travel document based
on data read in accordance with the requirements of [2], [3].

SDK provides:

e access to protected data of RFID-chip with an automatic application of BAC/BAP and
EAC (version 1.11) procedures when the user presents all the required additional in-
formation (MRZ lines, a set of certificates corresponding to the read document) [1];

e control of read data integrity, compliance of it format and contents with the require-
ments of the respective normative documents.

Working with electronic document in a session mode the following is ensured:

e possibility of organizing logic of the software for the implementation of various au-
thentication procedures (Standard Inspection Procedure, Advanced Inspection Proce-
dure, General Authentication Procedure) with full support for the use of BAC, PACE,
EAC (versions 1.11 and 2) [23, 24];

e access to eID application data and a possibility to use its additional built-in functions
[25];

e possibility to use functions of eSign application [26];

e access to eDL application data [37, 38, 39].

Note. Starting with SDK version 2.0, «Regula» 7051 RFID-chip reader operates under control
of PC/SC-driver. Data exchange between the reader and a RFID-chip is performed ac-
cording to the specification [21]. Thus, RFID-reader control is unified, so it is possible to
use not only the means of the SKD to work with it, but third-party software as well.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 23

3. INSTALLATION AND USE OF SDK TOOLS

SDK for RFID-chip readers is included in the «SDK for Document Readers “Regula” Mod.
70x3.xxx, 70x4.xxx, 83x3», starting with version 4.3 of the latter.

When installing the SDK an installation of all required program components is performed,
including RFID-chip reader driver.

When connecting the device into available USB slot the operational system (OS) will notify
you about the detection of the new device and will activate the driver.

To use the SDK software in the user's project it is required to:

e include RFID.h and PasspR.h header files with descriptions of functions exported
from RFID_SDK.dll and RFID SDK UI.dll, the used data structures and con-
stants, or to replace them with respective declarations (if the application is developed
not on C++);

e dynamically connect RFID_SDK.d11l and RFID_SDK UI.d11l control libraries, get
the pointers to the exported functions using Windows APl GetProcAddress ()
function.

The path to the control libraries is registered when installing SDK in the system registry in
Path string value of «<HKEY_CURRENT USER\SOFTWARE\Regula\RFID Reader SDK»
key. The SDK version is specified in Version string value of the same key.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 24

4. GENERAL INFORMATION

4.1. RFID-CcHIP TYPES

The RFID-chips are divided into several types according to the following criteria:

1. Physical parameters of the connection between chip and reader antennas
(ISO/IEC 14443-2):

e type A;

e type B.

2. Communications protocol:
e ISO/IEC 14443-3 (MIFARE® Classic Protocol) (for type A);
e ISO/IEC 14443-4 (for types A and B).

3. Data protection method (for chips with ISO/IEC 14443-4 support):
e with data protection using SM [2, 3, 24], EAC/EAP [1, 24];
e without data protection [20].

The «Regula» 7051 reader provides data reading from the memory of RFID-chips of all the
above-listed types.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 25

4. GENERAL INFORMATION

4.2. LOGICAL DATA STRUCTURE OF RFID-CHIPS
(PROTOCOL MIFARE® CLASSIC PROTOCOL)

Memory of RFID-chips supporting the communication protocol by the standard ISO/IEC
14443-3 (MIFARE® Classic Protocol), like MIFARE® 1K, MIFARE® 4K, MIFARE® Ultralight, has
a definite logical structure. It is divided into sectors, each of which is in turn divided into
blocks. The size of one block of data is fixed and is 16 bytes. The sector size varies depend-
ing on the total chip memory amount and sector’s location in it. The first 32 memory sec-
tors of any chip consist of 4 blocks (64 bytes). All the subsequent sectors consist of
16 blocks (256 bytes).

Thus, for instance, for the chip MIFARE® 1K with memory volume of 1 Kb, all memory will
be divided into 16 sectors with 4 blocks in each of them (16 - 4 - 6 = 1024 bytes). For the chip
MIFARE® 4K with memory size of 4 Kb - the first 32 sectors will consist of 4 blocks each, and
the sectors from the 33 to the 40" —of 16 (32 -4 - 16 + 8 - 16 - 16 = 4098 bytes).

26 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

4. GENERAL INFORMATION

4.3. LOGICAL DATA STRUCTURE OF RFID-CHIPS
(PROTOCOL ISO/IEC 14443-4)

From a software standpoint, the data contained in the memory of RFID-chip are organized
in a form of separate files. Each file has its own unique identifier, that is used to provide
access to the file. The logical designation of files (of their contained data) is defined by the
application, which includes the file. Each application also has a unique identifier that is
used to select the application. A separate application can provide a range of informational
and (or) functional capabilities.

The file that is not included in any of the applications is considered to belong to the root
Master File.

4.3.1.ePassport Application

When implementing the requirements of ISO/IEC 14443-4 for travel documents with em-
bedded RFID-chip, the logical data structure of ePassport application is defined by the
documents [2], [3], [23], [31].

There are service and informational data groups (files).

The service data groups include:

e EF.COM - information about presence of informational data groups;

e EF.SOD - data of the electronic document security object: digital signature and
other information used for passive authentication procedure of travel
document;

e EF.CVCA - public key identifier required for performance of TA procedure for EAC
(version 1.11).

When implementing the requirements of [23], [24] mandatory EF .CardAccess is added
to the chip service data groups. It contains information about the algorithms and the order
of performing the procedures of secure data access (PACE as a basic SM procedure, EAC
version, CA and TA algorithms).

EF.CardAccess file is not included in the structure of ePassport and it is located in
the root Master File.

The informational data groups include:
e EF.DG1 - mandatory group containing MRZ data;
e EF.DG2 — facial biometric graphic data of the DO [15];
e EF.DG3 - fingerprint biometric graphic data of the DO [14];

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 27

4. GENERAL INFORMATION

e EF.DG4 - iris biometric graphic data of the DO [16];
e EF.DG5 - additional photos of the DO;

e EF.DG6 — reserved for further standard development;
e EF.DG7 - image of DO's signature;

e EF.DG8 — reserved for further standard development;
e EF.DGY9 - reserved for further standard development;

e EF.DG10 — reserved for further standard development;

e EF.DG11 — additional personal details of the DO;

e EF.DG12 — additional information about the document;

e EF.DG13 — additional details (reserved for use by the national services of the issu-
ing state);

e EF.DG14 — information about cryptographic algorithms and keys used when imple-
menting EAC mechanism (performing CA and TA procedures);

e EF.DG15 — information about active authentication public key;

e EF.DG16 — information about persons to notify in case of emergency.

DG2, DG3 and DG4 groups contain biometric information in format specified by the
ISO/IEC 7816-11, which is compatible with the requirements of «The Common Biometric
Exchange Formats Framework» (CBEFF) [17].

This format allows storing a single data structure of multiple records of the same type of
biometric data (photos, fingerprints’ images etc.). Each record type is defined by its header.
The format of each specific type of record may provide the storing of several templates of
a certain type of biometric data (for example, fingerprints of different fingers or different
images of the iris). In turn, each of the templates can be represented by several variants of
images (for example, several versions of a fingerprint of the same finger).

In the case of data protection with the use of SM (BAC or PACE) file access (except
EF.CardAccess) is done using special procedures of secure data exchange between the
reader and the RFID-chip in compliance with the order of their conduct and the require-
ments of the specifications [2], [3] and [24].

When biometric data from DG3 and DG4 are additionally protected using EAC mechanisms,
the access to these groups is done according to the specifications [1] (EAC version 1.11) or [24]
(EAC version 2).

4.3.2.elD Application

When implementing the requirements of ISO/IEC 14443-4 for identification card with embed-
ded RFID-chip the logical data structure of eID application is defined by the document [25].

The service files include:

28 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

4. GENERAL INFORMATION

e FF.CardAccess

e EF.CardSecurity -

e EF.ChipSecurity -

— mandatory file containing information about the algorithms and

the order of performing of secure data access procedures (PACE
as a basic SM procedure, EAC version, CA and TA algorithms);
mandatory file containing information about the algo-
rithms and the order of performing of secure data access
procedures (CA keys parameters) and additionally built-in
functions (RI), digital signature and other information
used for the document passive authentication procedure
(file is a SO);

optional file containing information about the algorithms
and the order of performing of secure data access proce-
dures (chip-specific CA keys parameters) and additional
built-in functions (RI), digital signature and other infor-
mation used for the document passive authentication pro-
cedure (file is a SO).

These files are not included in the structure of ezIDand are located in the root Master File.

The informational data groups of e 7D application include:

EF.
EF.

EF

EF

EF

EF

DG1
DG2

.DG3
EF.
EF.

DG4
DG5

.DG6
EF.
EF.
EF.
EF.
EF.

DG7
DG8
DGY
DG10
DG11

.DG12
EF.
EF.

DG17
DG18

.DG19
EF.
EF.

DG20
DG21

document type;

code of issuing state;

document date of expiration;

DO's name;

DO's surname;

religious/artistic name (alias) of the DO;
DO's academic title;

DO'’s date of birth;

DO'’s place of birth;

DQO'’s nationality;

DO's sex;

additional details;

DO's place of residence;

DO'’s personal identifier (Community ID);
details about permanent residence permit (1);
details about permanent residence permit (2);
additional details.

EF.DG13-DG16 data groups are reserved for further standard development [25].

In the case of data protection with the use of SM (PACE) file access (except
EF.CardAccess) is done using special procedures of secure data exchange between the
reader and the RFID-chip in compliance with the order of their conduct and the require-
ments of the specifications [24].

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 29

4. GENERAL INFORMATION

As the additional built-in functions e1Dapplication provides features:

o restricted identification (RI) of the chip;
e verification of DO’s Community IDand DO’s age by means of a chip.

4.3.3. eSign Application

Logical data structure for eSign application is defined by the document [26].

The service files include:

e EF.CardAccess - mandatory file containing details about the algorithms and the or-
der of performing of secure data access procedures (PACE as a
basic SM procedure, EAC version, CA and TA algorithms).

EF.CardAccess is not included in the structure of eSign and is located in the root Master
File.

eSign application grants the user with the access to the function of data digital signature
generation only after the General Authentication Procedure (see section 4.11.3).

To open an access to eSign application functions after the document personalization
procedure the application activation is performed including creation of:

e pair of cryptographic keys;

e password of access to the function of the digital signature generation (eSign-PIN).

To close an access to the application it is required to terminate the active key pair and (or)
active eSign-PIN.

Usually eSign is used in conjunction with other applications, such as eID, providing addi-
tional functionality to the identification document.

4.3.4. eDL application

When implementing the requirements of ISO/IEC 14443-4 for driving licenses with embedded
RFID-chip the logical data structure of eDL application is defined by the documents [37], [38],
[39].

There are service and informational data groups (files).

The service data groups include:
e EF.COM - information about presence of informational data groups;

30 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

4. GENERAL INFORMATION

e EF.SOD

- data of the electronic document security object: digital signature and

other information used for passive authentication procedure of driving
license;

The informational data groups include:

e FF.

o EF,
e EF.
e EF.
o EF,
e EF.
e EF.
.DG8
e EF.
e EF.
o EF.

e FF

o FF.

DG1

DG2
DG3
DG4
DG5
DG6
DG

DG9
DG10
DG11

DG12

.DG13
.DG14

mandatory group containing demographic data elements and vehicle cate-
gories/restrictions/conditions;

optional license holder information;

optional issuing authority details;

optional portrait image(s);

optional signature/mark image(s);

optional facial biometric template(s);

optional finger biometric template(s);

optional iris biometric template(s);

optional other biometric;

reserved for future use;

optional domestic data (reserved for domestic use, the encoding is defined
domestically);

non-match alert — reaction on detection of any differences between the ma-
chine-readable information and the human-readable information (printed
on a document);

information about active authentication public key;

information about cryptographic algorithms and keys used when imple-
menting EAP mechanism (performing CA and TA procedures).

DG6, DG7 and DG8 data groups are analogues of DG2, DG3 and DG4 data groups of
ePassport application (see section 4.3.1).

In the case of data protection with the use of SM (BAP) file access is done using special
procedures of secure data exchange between the reader and the RFID-chip in compliance
with the order of their conduct and the requirements of the specifications [37], [38], [39].

When biometric data from DG7 and DG8 are additionally protected using EAP mechanisms,
the access to these groups is done according to the specifications [38].

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 31

4. GENERAL INFORMATION

4.4. ACCESS KEYS TO PROTECTED DATA

To establish a secure communication channel between the reader and the RFID-chip
when implementing SM mechanism several types of keys (passwords) can be used. Each
of them can be used by the terminal of a certain type.

The set of functional and informational capabilities ensured by the chip also depends on
the type of the used password:

e MRZ — data access password is derived from MRZ printed on the document and
available for OCR operation.

For IS terminal this type of password provides its full functionality; for other types it is not used.

MRZ can be used to organize the SM communication channel using both BAC and PACE as a
basic mechanism.

e SAI — a password, usually printed on the document as a separate text field, a bar-code
or a special MRZ and available for OCR operation.

For IS terminal this type of password provides its full functionality; for other types it is not used.

SAI can be used to organize the SM communication channel using BAP (for eDL application).
e CAN - a short password, usually printed on the document and available for OCR operation.

For IS and AT terminals this type of password provides their full functionality; for ST — possibil-
ity to create a digital data signature, as well as change of eSign-PIN; for UT it is not used.

CAN can be used to organize the SM communication channel using PACE as a basic mecha-
nism only.

e PIN - ashort secret password known only to the DO.

For AT terminal this type of password provides its full functionality; for ST — possibility of
creation/termination of eSign-PIN and generation/termination of cryptographic key pair;
for IS it is not used.

PIN can be used to organize the SM communication channel using PACE as a basic mecha-
nism only.

e PUK - along secret password known only to the DO.

For AT, ST and UT terminals this type of password provides a possibility of unblocking the
PIN and the eSign-PIN; for IS it is not used.

PUK can be used to organize the SM communication channel using PACE as a basic mecha-
nism only.

32 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

4. GENERAL INFORMATION

4.5. PASSWORD MANAGEMENT

4.5.1.PIN

During work with electronic document performing PACE procedure situations might arise
when:
e it is necessary to change PIN (or CAN) value;
e PIN is temporary suspended (after failed attempts of its application the counter of the
remaining attempts has reached 1);
e PIN is blocked (after failed attempts of its application the counter of the remaining
attempts has reached 0);
e it is required to activate PIN, because the e1D application is deactivated;
e itis required to deactivate the PIN for deactivation of e 7D application.

All these situations require a certain set of possible actions from the user to be able to run
correctly with the document. They include the following operations:
e change CAN;
change PIN;
resume PIN ;
unblock PIN;
activate PIN ;
deactivate PIN.

To change PIN/CAN it is required to:
e perform General Authentication Procedure (see clause 4.11.3) using the current
PIN/CAN;
e perform a separate operation of password change.

To resume PIN it is required:
e to perform PACE procedure using the CAN for temporary resuming the current PIN;
e within the context of the secure communication channel established in the previous
step to perform PACE procedure using temporary resumed PIN.

To unblock PIN it is required to:
e perform PACE procedure using the PUK;
e perform a separate operation of password unblocking.

To activate/deactivate PIN it is required to:
e perform General Authentication Procedure;
e perform a separate operation of password activation/deactivation.

All the above-listed operations (except PIN unblocking) are available only for a terminal
with effective AT type and PIN Management authorized right (see section 4.7).

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 33

4. GENERAL INFORMATION

4.5.2.eSign-PIN

The operations of management of eSign-PIN password (used for access to the function of
data digital signature generation of the eSign application) can be attributed to a separate
category.

During work with electronic document situations may arise when:
e it is required to create eSign-PIN, because eSign application has not been yet ini-
tialized or it was deactivated;
e it is required to change the value of eSign-PIN,;
e eSign-PIN is blocked (after failed attempts of its application the counter of the re-
maining attempts has reached 0);
e it is required to terminate eSign-PIN for deactivation of eSign application.

To create/destroy eSign-PIN it is required to:
e perform General Authentication Procedure using PIN;
e perform a separate operation of creation/destruction of eSign-PIN.

To unblock eSign-PIN it is required to:
e perform General Authentication Procedure using PUK;
e perform a separate operation of unblocking of eSign-PIN.

To change eSign-PIN it is required to:
e perform General Authentication Procedure using CAN;
e perform a separate operation of changing eSign-PIN supposing additional indication
of the current password value.

All the above-listed operations are available only for a terminal with effective ST type.

34 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

4. GENERAL INFORMATION

4.6. TERMINAL TYPES

The terminal means a personal computer (PC) on which the software uses the SDK tools to
communicate with the RFID-chip.

There are several types of terminals. The SDK provides support of a separate set of func-
tional capabilities for each of them:

e Inspection System (IS).

This type of terminal provides access to the data groups of ePassport and eDL applica-
tions with a possibility to perform verification of document authenticity.

This type of terminal also provides access (only for reading) to the data groups of the eID
application.

e Authentication Terminal (AT).

This type of terminal provides access to the data groups of the e1D application (reading
or updating) with a possibility to perform additional procedures of Rl and auxiliary data
verification, as well as a possibility of data access key management (change PIN/CAN, PIN
blocking).

For the eSignapplication a possibility is provided for installation of eSign-PIN and genera-
tion of a new pair of cryptographic keys for use in operations with digital data signature.

e Signature Terminal (ST).

This type of terminal provides access to the function of the data digital signature genera-
tion of eSign application.

e Unauthenticated Terminal (UT).

This type of terminal provides access to the functions of the new PIN installation (for e1D)
and unblocking of PIN and eSign-PIN.

In terms of the RFID-chip, the terminal is «unauthenticated» until the successful completion
of terminal authentication.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 35

4. GENERAL INFORMATION

4.7. EFFECTIVE TERMINAL AUTHORIZATION

The process of determination of a combination of protected data access rights
and functional capabilities of electronic document for the current terminal is called effec-
tive terminal authorization. The main technical element of this process is the procedure
of terminal authentication (Terminal Authentication, TA).

On the one hand, TA is reduced to verification of the digital signature of the control data
fragment generated in accordance with specific requirements [1], [24].

The public key, with the help of which the chip must perform verification of the transmitted
digital signature, is contained in a special terminal certificate.

The terminal certificates are released by the subject called the Document Verifier (DV) — or-
ganizational sub-division administering one or another group of terminals. The contents of
the terminal certificate are signed by a digital signature, which allows verifying the authen-
ticity of this certificate. Verification of digital signature of the terminal certificate is possible
only if there is another certificate containing a respective public key— of DV-certificate.

DV-certificates are released by the basic subject — Country Verifying Certificate Authority
(CVCA) — and are signed also by a digital signature for provision of their authentication.
Digital signature of DV certificates are verified by using the public key, which is recorded in
the chip private memory at stage of electronic document production.

It is possible also to switch to using of a different CVCA-key for verification of DV-
certificate signature with the help of a special CVCA-Link-certificate.

Data of all three above-listed types of certificates (CVCA-Link-, DV- and terminal certifi-
cate) are represented in a definite format to verify them by RFID-chip (Card Verifiable, CV).
They contain:
e own digital signature;
e public key identifier, which is necessary for verification of certificate digital signature
(Certificate Authority Reference, CAR);
e own identifier (i. e. identifier of public key containing in the certificate) (Certificate
Holder Reference, CHR);
e public key data.

Thus, knowing the CVCA public key identifier, it is possible to generate a respective certifi-
cate chain and to verify the authenticity of each of them consequently, completing straight
with verification of digital signature of the data control fragment. This is the technical as-
pect of TA.

On the other hand, each of the above certificate contains not only the data associated with
the implementation of TA's technical side, but also another important component —a com-
bination of access rights to protected data and functionality of electronic document dele-
gated by the superior entity to the subordinate one (for example, from DV to one or an-

36 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

4. GENERAL INFORMATION

other terminal). This information is stored in a special CHAT certificate data object (Certifi-
cate Holder Authorization Template).

It is the formation of a logical combination of delegated rights from the entire given certif-
icate chain that makes the process of effective terminal authorization. In fact, the terminal
confirms its rights by having access to the respective certificates, as well as to the private
cryptographic key, that used for a generation of data control fragment digital signature
that need to be send to the chip to be verified.

During EAC (version 2) the delegated by the superior subjects combination of access rights
may be additionally restricted on the level of the terminal, i.e, straight by the user. This is
achieved by declaring the information about the terminal type and the required combination
of access rights at the stage of terminal configuration when preparing the procedure of SM-
communication channel opening (see clauses 5.8.4, 5.8.7), which, as the CHAT data object, is
transferred to the chip during PACE procedure [24, part 3, §B.11.1].

The type of protected data access that is used during PACE procedure influences the final
result of effective authorization as well.

For various terminal types the possible set of delegated access rights differs (Table 1). In
compliance with it the format of the data object differs as well, which serves for represent-
ing such combination of rights [24, part 3, §C.4].

The set of ePassport application read access rights for IS terminal:
e DG3;
e DG4.

In addition, read access is guaranteed by default for IS terminal for all information groups
of data of the eTD application.

The set of access rights for AT terminal:

e rights to read the data of e1D application informational groups (DG1-DG21) that are
defined separately;

e rights to write (update) the data of eID application informational groups (DG17-
DG21) that are defined separately;

e Install Qualified Certificate — right to generate a pair of cryptographic keys for eSign
application;

e PIN Management — right to use PIN password management instructions;

e CAN Allowed - right to use CAN password;

e privileged Terminal — right to use privileged CA keys;

e restricted Identification — right to perform restricted identification;

e community ID Verification — right to perform verification of Community ID;

e age Verification — right to perform the user age verification.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 37

4. GENERAL INFORMATION

Access right for ST terminal:

e performing the operation of data digital signature generation.

Table 1
Summary table for the access rights to the resources
of electronic document for different terminal types
Operation IS AT ST uT
ePassport, eDL applications
Data group readin Not sensitive i — — —
group 9 Sensitive EA - - -
eID application
Data group reading + + - -
Data group modification DG17-DG21 - EA - -
Restricted Identification - EA - -
CommunityID verification - EA - -
Age verification - EA - -
eSign application
Key pair generation - EA - -
. . +
eSign-PIN generation - - (PIN) -
eSign-PIN changing - - (C;N) -
. . + +
eSign-PIN unblocking - - (PUK) (PUK)
. o +
eSign-PIN terminating - - (PIN) -
. o +
Key pair terminating - - (PIN) -
Digital signature generation - - EA -
Password management
EA +
: PIN - (PIN) - (PIN)
Changing
CAN - EA - -
(PIN)
. EA +
Unblocking - (PIN, PUK) - (PUK)
o EA
Activation PIN - (PIN) - -
Deactivation - EA - -
(PIN)

Note. In brackets the required type of password. EA — is formed by the results of effective terminal authorization.

38

Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

4. GENERAL INFORMATION

4.8. DATA SECURITY MECHANISMS

To protect the data of electronic documents several basic security mechanisms are provid-
ed, which are defined in [1], [2], [3], [23], [24]:

e passive authentication (PA);

e active authentication (AA);

e access control.

4.8.1.Passive Authentication

Passive authentication uses the mechanism of digital signature to confirm the authenticity
of data that are stored in RFID-chip memory. It allows detecting the presence of any
changes in signed data read from the RFID-chip memory but does not protect against their
full copying (cloning of RFID-chip).

Digital signature is generated at the stage of document personalization on the basis of
contents of a document security object (SOp) by the manufacturer of electronic document
(so called «Document Signer», DS). The SOp itself may contain the hashes (checksums) of
data information groups (files) of an application.

To use the digital signature mechanism requires a pair of cryptographic keys. The private
key is used to compute the digital signature and is available only for the signer; the public
key — to verify the signature value and is distributed as a certificate (a special data object,
which is protected by the digital signature mechanism as well).

Thus, the procedure of passive authentication consists of two basic stages to control:
e the authenticity of document security object;
e integrity of document data informational groups.

To verify the authenticity of electronic document with the help of the PA it is required to:

e read SOp data from the memory of RFID-chip;

e receive DS-certificate with a public key to verify a digital signature of SOp;

e receive CSCA-certificate (Country Signing Certificate Authority) with a public key to
verify a digital signature of DS-certificate;

e verify the authenticity of the CSCA-certificate by verification of its digital signature
(since it is self-signed, the signature verification may be performed using the public
key contained in the certificate itself);

e verify the authenticity of the DS-certificate by verification of its digital signature;

e verify the authenticity of the SOp by verification of its digital signature;

e verify the authenticity of the read informational data groups by comparing the com-
puted hash values and the corresponding values contained in the SOp.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 39

4. GENERAL INFORMATION

Since Master Lists (ML) can be used as a storage for CSCA-certificates for SOp verification
[34], a validation of digital signature of master list's security object (SOm) is a part of pas-
sive authentication. This digital signature is generated at the stage of master list issuance
on the basis of its contents by the issuer (so called «Master List Signer», MLS).

To verify the authenticity of master list it is required to:

e receive MLS-certificate with a public key to verify a digital signature of SOwm;

e receive CSCA-certificate with a public key to verify a digital signature of MLS-
certificate;

e verify the authenticity of the CSCA-certificate by verification of its digital signature
(since it is self-signed, the signature verification may be performed using the public
key contained in the certificate itself);

e verify the authenticity of the MLS-certificate by verification of its digital signature;

e verify the authenticity of the SOwmLby verification of its digital signature.

Search for a public key to verify a digital signature can be performed by one of two availa-
ble criteria:

e a combination of identifier of the source (organization), which has issued the respec-
tive certificate (Issuer), and the certificate serial number (serialNumber);

e identifier of the signature subject (the organization that performed document per-
sonalization) (subjectKeyIdentifier).

Access to the CSCA-, DS- and MLS- certificates must be provided within the context of the
policy of providing the terminal functioning. As a rule, local or centralized certificate stor-
age — Public Key Directory (PKD) — is used for these purposes. In most cases the DS-
certificate is included directly in the data structure of SOp; MLS- and corresponding CSCA-
certificate can be present in SOmL data structure.

4.8.2. Active Authentication

Active authentication uses mechanism of «challenge — response» to determine the authen-
ticity of RFID-chip.

A pair of cryptographic keys is required for its operation:
e the private key — is stored in protected memory of the RFID-chip and is inaccessible
for reading;
e the public key — is stored in a special informational data group DG15 of ePassport
application (for another applications AA is not provided).

In a process of active authentication, the terminal sends randomly selected data fragment
(«challenge») to the RFID-chip. The chip generates a digital signature of the data using the
private key and returns its value («response») to the terminal. The terminal verifies the va-

40 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

4. GENERAL INFORMATION

lidity of the digital signature using the public key, determining thereby the authenticity of
the private key used by the chip, and hence the one of the chip itself.

Active authentication allows identifying effectively the fact of RFID-chip cloning.

4.8.3. Access Control

RFID-chip protects the data from unauthorized access by the respective access control
mechanisms.

The basis of any access control mechanism is the establishing of a secure communica-
tion channel between the reader and the chip (Security Messaging, SM). At the same
time the data to be sent are subject to preliminary encryption and subsequent decryp-
tion when received.

In addition to data protection the access control mechanism allows restricting the use of
one or another informational or functional chip capabilities by the terminal depending on
the specified effective terminal type and delegated access rights.

The data, which are relatively easy to obtain from sources other than the document itself (for
example, MRZ, DO photo etc.), are protected by Basic Access Control/Protection (BAC/BAP).

BAC/BAP only checks that the terminal has physical access to the document by re-
quiring the printed data (MRZ, bar-codes, text fields) to be read optically.

More sensitive personal data (fingerprints, iris) are additionally protected by the extended
access control mechanism (Extended Access Control/Protection, EAC/EAP). Their use is per-
mitted only to authorized terminals, which confirmed their right by successful TA proce-
dure.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 41

4. GENERAL INFORMATION

4.9. ADVANCED SECURITY MECHANISMS

There are several variants of advanced security mechanisms for electronic document data
protection, that are an alternative or supplement of the basic mechanisms:

e Password Authenticated Connection Establishment (PACE);

e Chip Authentication (CA);

e Terminal Authentication (TA).

If PACE and CA (version 1) may be used as independent protocols for replacement of BAC
and AA respectively, then TA may be used only in combination with CA.

4.9.1.Password Authenticated Connection Establishment

When organizing a secure communication channel in [23] and [24] it is proposed to use
PACE as BAC/BAP alternative.

Unlike BAC/BAP, stability and security of its cryptographic algorithm directly depends on
the key, which is derived from a combination of several fields of MRZ, PACE operates with
more durable keys, the «strength» of which does not depend on the «strength» of the
used password (CAN or MRZ), which makes this protocol more secure.

4.9.2.Chip Authentication

Chip authentication procedure is one of the components of EAC/EAP. Like BAC/BAP and
PACE it serves to organize a secure communication channel, which is more reliable com-
pared to the basic procedures. In addition, CA is an alternative of AA, as it confirms the
chip authenticity as well.

CA is based on the use of a static pair of cryptographic keys, which are stored in chip
memory.

Implementing EAC/EAP (version 1.11) information about the keys and algorithms of CA is
stored in DG14 data group of ePassport or eDL applications.

Implementing EAC (version 2) information about the keys and algorithms of CA is stored in
EF.CardAccess, EF.CardSecurity, EF.ChipSecurity files of the root Master File.

Successful CA procedure ensures that the public key and the private key stored in the pro-
tected chip memory comply with each other. And this in turn confirms that the chip has
not been cloned.

42 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

4. GENERAL INFORMATION

4.9.3. Terminal Authentication

The second component of EAC/EAP is the procedure of terminal authentication. TA is also
a technical aspect of the process of effective terminal authorization (see section 4.7).

To perform TA the following actions are required:

e acquisition of CVCA-key identifier, that is required for DV-certificate authentication.
This identifier is contained in a separate service EF.CVCA file of ePassport applica-
tion (for EAC version 1.11) or is reported by the chip if PACE procedure is successfully
performed (for EAC version 2);

e acquisition of the respective CVCA-Link-certificate (if available) and sending to the chip
to verify its digital signature and switch to the use of the contained CVCA public key;

e acquisition of the respective DV-certificate and sending to the chip to verify its digital
signature with the current CVCA public key;

e acquisition of the respective terminal certificate and sending to the chip to verify its
digital signature with the public key from DV-certificate that was previously transmitted;

e generating a digital signature of data fragment, which was formed in compliance with
the [1] or [24] (challenge), and its transmitting to the chip to verify with the public key
from the terminal certificate that was previously transmitted.

Formation of a digital signature is made using the terminal private key, the access to which,
like it is to the respective certificates, is performed in compliance with the policy of provid-
ing the terminal functioning.

Implementing EAC (version 1.11) the information about algorithm and the supported TA
version is stored in DG14 data group of ePassport application. Implementing EAC (ver-
sion 2) the information about algorithm and the supported TA version is stored in
EF.CardAccess, EF.CardSecurity, EF.ChipSecurity files of the root Master File.

ATTENTION! Another difference in the performance of TA for EAC (versions 1.11 and 2) is
that TA version 2 should be performed before CA procedure, but a pair of cryptographic
CA keys must already be generated at the time of direct TA performance [24]. In this re-
gard, the SDK introduced a concept of TA preliminary step for CA procedure.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 43

4. GENERAL INFORMATION

4.10. ADDITIONAL SECURITY MECHANISMS

The [24] has a specified number of additional security mechanisms when working with e1D
application:

e restricted identification (R/);

e verification of auxiliary data in the process of TA.

4.10.1. Restricted Identification

The terminal sector means some logical area of use of a terminal within the organization of
work with electronic documents.

The superior entity (usually — Document Verifier) gives to each sector a pair of cryptograph-
ic keys. When producing a document for use within a particular sector, the private key is
stored in secure memory of the RFID-chip, and the public key is placed in an accessible
terminal database.

In the process of restricted identification, the chip reports its unique sector-specific identifi-
er in response to the sent sector public key. In compliance with [24] support of work with
two different key pairs is possible.

The sector-specific identifier may be used for revocation of electronic document when it is
in a special revocation list, which is composed by the superior entity (such as CVCA).

Details about the algorithm and parameters of Rl is stored in EF.CardAccess,
EF.CardSecurity, EF.ChipSecurity files of the root Master File.

Rl is available only after passing the preliminary CA and TA procedures.

4.10.2. Auxiliary Data Verification

Working with eID application and after successful TA procedure completion there is a
possibility of verification of auxiliary data directly by means of the chip without necessity to
read the corresponding data groups and performing the verification in the software [24].

Such data include:
e DO's Community ID,
e DO's age.

In the first case, a comparison of data transmitted to the chip with contents of DG18
is executed (byte-to-byte comparison, starting with the first byte until the end of
the transferred data), in the second case — a comparison of transmitted date with con-
tents of DG8 to determine the fact that the document owner was not born later than
that date.

44 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

4. GENERAL INFORMATION

4.11. PROCEDURES OF DOCUMENT AUTHENTICATION

The procedure of document authentication allows:

e performing the effective terminal authorization, by determining the effective type of
terminal and its corresponding available set of functionalities for organization of data
exchange with the RFID-chip;

e on the basis of the data from the RFID-chip to verify the authenticity of the document;

e using the provided functionality for additional verifications (RI, auxiliary data ver-
ification) or service operations (password management, digital signature genera-
tion etc.).

4.11.1. Standard Inspection Procedure

This procedure of document authentication (Standard Inspection Procedure) is used to con-
firm the effective type of IS terminal.

It provides access to all data groups of ePassport and eDL applications, except the sen-
sitive biometric data of fingerprints and iris.

The order for carrying out this procedure is following:

1) for ePassport application, by the presence of EF.CardAccess and its contents
the support of PACE by the RFID-chip as a basic mechanism of SM is determined. In
case of such support the secure data access channel is initialized;

2) the application is selected;

3) in case if PACE is not supported, the secure data access channel with BAC/BAP as a
basic mechanism is initialized during this step;

4) the first PA phase is performed: EF. SOD is read, verification of its digital signature is
performed.

In case of a successful step 4 further reading of informational data groups with their integ-
rity verification as part of PA is possible.

4.11.2. Advanced Inspection Procedure

This procedure of document authentication (Advanced Inspection Procedure) is used to
confirm the effective type of IS terminal.

It provides access to all data groups of ePassport and eDL applications, including the
sensitive biometric data of fingerprints and iris.

The order for carrying out this procedure is following:

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 45

4. GENERAL INFORMATION

1)
2)
3)

4)
5)

6)

for ePassport application, by the presence of EF.CardAccess and its contents
the support of PACE by the RFID-chip as a basic mechanism of SM is determined. In
case of such support the secure data access channel is initialized;

the application is selected;

in case if PACE is not supported, the secure data access channel with BAC/BAP as a
basic mechanism is initialized during this step;

CA procedure (version 1) is performed, that opens a new SM communication channel;
the first PA phase is performed: EF. SOD is read, verification of its digital signature is
performed;

TA procedure (version 1) is performed, that opens access to informational groups of
sensitive biometric data.

In case of a successful step 5 further reading of informational data groups with their integ-
rity verification as part of PA is possible.

In case of a successful step 6 further reading of information data groups of sensitive bio-
metric data with their integrity verification as part of PA is possible.

4.11.3. General Authentication Procedure

This procedure of document authentication (General Authentication Procedure) is used
to confirm the effective type of any terminal (depending on the information given by
the terminal during the step of procedure initialization).

It provides access to:
e all data groups of ePassport, eDL and eID applications for IS terminal;

reading (and if provided — updating) of all data groups of e 1D application for AT ter-
minal;

e functions of initialization of eSign application (creating of eSign-PIN and of a new

pair of cryptographic keys for digital signature generation) for AT terminal;

e functions of eSign application of generating data digital signature for ST terminal;
e functions of password management for all types of terminal (depending on the used

password when initializing SM communication channel).

The general authentication procedure means exclusive use of PACE as a basic SM mecha-
nism and is available only for RFID-chips that support EAC (version 2) [24].

The order for carrying out this procedure is following:

1)

by the presence of EF.CardAccess and its contents the support of PACE by
the RFID-chip as a basic mechanism of SM is determined. In case of such sup-
port the secure data access channel is initialized. Otherwise the procedure is
unavailable.

2) TA procedure, version 2, is performed.

46

Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

4. GENERAL INFORMATION

3) The first PA phase is performed: EF.CardSecurity and EF.ChipSecurity (if
necessary) are read, verification of their digital signature is performed.

4) CA procedure, version 2, is performed, which opens a new SM communication
channel.

In case of a successful step 4 further selection of required applications to read informa-
tional data groups with their integrity verification as part of PA procedure, as well as using
of various functionality of the electronic document is possible.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 47

5. WORKING WITH SDK

5.1. ORGANIZATION OF WORK
WITH THE MAIN CONTROL LIBRARY

The main control library SDK RFID_SDK.d11 exports a number of functions, used to work
with the RFID-chips readers.

Operation of all functions is organized according to the possible use of multi-threaded da-
ta processing environment. Call of any functions of the library can be performed by multi-
ple threads of the user application. This, for example, allows organizing data reading from
the RFID-chip in the background, leaving the main program interface unlocked.

The library RFID_SDK.d11l developed for the dynamic connection using Windows API
LoadLibrary () function. Pointers to exported functions can be obtained using Windows
APl GetProcAddress () function.

After loading the library into memory, it is required to make a call to the initialization func-
tion RFID Initialize().

The main function of the library, through which a user application may initiate all necessary
actions to work with RFID-chips, is _RFID_ExecuteCommand () function. It takes a com-
mand triplet as parameters: command code, command input parameter and pointer to the
container for the returned results. As any operations of data exchange between the reader
and the RFID-chip are time-indivisible (synchronous), the implementation of execution of
all commands by the control library is made also by the synchronous scheme. This means
that at the time _RFID_ExecuteCommand () function returns the requested action is fully
completed and all the possible results of command execution have been received and are
valid.

To receive detailed information about the current actions that occur during the execution
of the command, the callback function mechanism is used. Using exported
_RFID SetCallbackFunc () function it is possible to initialize a pointer to a function
(that has RFID_NotifyFunc type) of user application, that will be called at various stages
of the command execution providing the event code (hereinafter - message) and additional
data in the context of the event. Execution of the callback-function will occur by default in
the context of the inner SDK working threads. In this case consideration should be given to
the ability to synchronize actions of the main application that uses the library to work with
shared resources (data, interface) as well as to prevent the recursive calls to
_RFID _ExecuteCommand (), which will be calling it directly from the callback-function.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 48

5. WORKING WITH SDK

At the end of the work with the main control library it is required to call_RFID Free() func-
tion and unload the library from memory using Windows AP| FreeLibrary () function.

ATTENTION! _RFID Free() must be called from the same thread of the user application
as previous _RFID _Initialize ().

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 49

5. WORKING WITH SDK

5.2. ADDITIONAL DATA VERIFICATION

Starting with the SDK version 2.0, an additional check of compliance with numerous nor-
mative documents is performed at all stages of the work:
e for contents of the information and service data groups from the RFID-chip memory;
e for associated resources used during the authentication procedures (certificates for
passive authentication, TA certificates and private keys etc.).

The user application will be informed about all ascertained inconsistencies by
RFID_Notification_ISOError notification message with a numerical code in the mes-
sage parameter indicating the specific identified situation.

Two types of inconsistencies (remarks) have been defined: critical and non-critical.

Critical inconsistency shows the impossibility to continue the current operation due to
incorrect data being processed (notification codes — eLDS_ParsingErrorCodes values).

Non-critical inconsistency allows continuing the current operation and leaves the right to
the user application to choose a reaction to the given situation (notification codes —
eLDS_ParsingNotificationCodes values).

The user application can choose the level of strictness of SDK reaction to the detection of
inconsistencies. To define it RFID_Command_SetDataProcessingLevel command is
used, to read the current value - RFID_Command_GetDataProcessingLevel command.

When choosing a level of strictness of dpl1StrictIsSO any found inconsistency is critical
and its detection interrupts the current operation.

To receive an abbreviation of a notification code (or the return code from SDK function)
there is RFID_Command_Get_CodeTranscription command.

Additionally, there exists a possibility to choose the type of logical data profiler to use with
the electronic document in accordance with the requirements of [2] and [3]
(default) or [31] by using RFID Command Set ProfilerType command.
RFID Command_Get ProfilerType is used to read the current value. Differences in the
use of different types of profilers are in a set of requirements for the structure and content
of data of various objects used in the process of working with electronic document. Sets of
possible inconsistencies found in the analysis of the data differ respectively.

50 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

5.3. RFID-cHIPS READER CONNECTION AND ACTIVATION

«Regula» 7051 RFID-reader can be both a separate device or can be embedded in other
devices such document readers «Regula» mod. 7024.xxx. In both cases, when connecting
to a free USB-port of PC the OS will determine its presence as a separate device; it will acti-
vate the driver and execute the primary initialization. Besides, the reader will be registered
in system «Device Manager» in «Smart card readers» group as «Regula RF-Reader».

The main control library SDK supports work with any number of readers, simultaneously
connected to the PC, but at one time only one of them can be active.

To determine the total number of readers that are currently connected to the PC there is
RFID Command Get DeviceCount command.

Each device has its own identifier — its corresponding serial number (index) in the general list.

A number of commands allows requesting a particular characteristic of a particular reader
in the list by its index:

e RFID_Command_Get DeviceDescription — symbolic name of the reader that is
determined via system SCard service;

e RFID_Command_Get DeviceInstanceID — symbolic system identifier of the reader
device instance determined with the help of Windows APl SetupDiGetDeviceIn-
stancelD () function;

e RFID Command_Get_ParentInstanceID - symbolic system identifier of the device
instance, to which the reader is physically connected (in most cases it is USB Hub),
which is determined with the help of Windows APl CM_Get_Device_ID () function;

e RFID Command_Get DeviceHardwareID — symbolic system identifier of the reader,
which is determined with the help of Windows APl SetupDiGetDeviceRegis-
tryProperty () function;

e RFID Command Get DeviceSN - reader serial number;

e RFID Command Get DeviceDriverVersion - version of the device driver.

After initialization of the main control library the device with index 0 is activated by default.

All commands for data reading and received messages about the appearance of RFID-chip
in the reader scope (or its removal from it) will correspond only to the current active device.

To activate a specific reader there are commands:
e RFID Command_Set_CurrentDevice — by reader’s index in the list;
e RFID Command_SelectDeviceByName — by the symbolic string of the system UID
of the parent HUB;
e RFID Command_SelectDeviceBySN - by reader’s serial number.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 51

5. WORKING WITH SDK

Index of the current active device can be received by
RFID Command Get CurrentDevice command.

Since the functionality of a RFID-reader have extended with the transition to control by
PC/SC driver, the implementation of some of them in practice is possible only in conjunc-
tion with a specific version of reader’s firmware. The same applies to the extension of the
functionality of the reader in developing the subsequent SDK versions.

If the version of reader’s firmware does not fully implement the functionality of the current
SDK version, the wuser application will automatically be informed of this by
RFID Notification Error message with RFID _Error OldFirmware notification
code at the time of reader activation. In this case it is required to update reader’s firmware
using special utility (see section 1).

To determine the firmware version of the RFID-reader there is
RFID Command Get DeviceFirmwareVersion command.

If during work with the SDK RFID-reader was physically unplugged from the PC, the user
application will be informed by RFID Notification_ PCSC_ReaderDisconnected
message.

When connecting to the PC a new RFID-reader working under PC/SC driver control, the us-
er application will be informed by RFID Notification PCSC_ReaderListChanging
message in the beginning of the procedure of rebuilding the list of available RFID-readers
and RFID Notification_PCSC_ReaderListChanged atitsend.

52 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

5.4. READER PARAMETERS

5.4.1. RFID-chip Detection Modes

After initialization of the main control library and activation of the RFID-reader the user
application receives a possibility to track the moments of RFID-chip appearance in the
scope of the reader antenna and its removal from it. In both cases, a call to
RFID_NotifyFunc callback-function, preinstalled with _RFID_SetCallbackFunc (), will
be carried out. RFID_Notification DocumentReady notification code and its logical
value: true, if the RFID-chip has appeared in sight, or false, if it was removed from the
scope, will be transferred to RFID_NotifyFunc as parameters.

Two modes are provided in the SDK:
e automatic;
e manual.

In the first case the search of chip will be carried out automatically. In the second case -
only after execution of RFID_Command_DocumentDone command with ddmDetectChip
parameter.

A variant of the used detection mode is set by the input parameter of
_RFID Initialize() function (CtrlRF Auto or CtrlRF_Manual) or by
RFID Command Set DetectionMode command.

To determine the current status of chip presence in the scope of the reader there is
RFID Command_IsDocument command.

5.4.2. Mode to Ignore RFID-chips Supporting only Protocol
ISO/IEC 14443-3 (MIFARE® Classic Protocol)

To connect the SDK main control library in the mode of ignorance for RFID-chips, which
are not supporting the protocol ISO/IEC 14443-4, it is required to use the value
CtrlRF_14443_4_0Only when forming the parameter of its initialization function
_RFID Initialize (). In this case, the presence of such chips in the field of the reader
antenna will not be detected.

5.4.3. Data Exchange Speed between the Reader and the RFID-chip

To restrict the maximum allowed data exchange speed between the reader and the RFID-
chip there is RFID_Command_Set_OperationalBaudRate command.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 53

5. WORKING WITH SDK

5.4.4.Size of Operating Data Buffer for Reading

A possibility of implementing data exchange between the reader and the RFID-chip is pro-
vided by the standard [20] using the commands of extended length (extended Le),
which gives a large benefit for the total time of data reading.

Using the commands of single length, the data exchange between the reader and the chip
is carried out in portions not exceeding 256 bytes. Using the commands of extended
length, the buffer size is limited to 64 kilobytes, which in case of support of such working
mode by the chip allows reading the data group contents with significantly less number of
queries.

To specify the desired size of the buffer for read data
RFID Command SetTransferBufferSize command is used.

When a parameter for this command is set to 0 the extended length commands to read
data will not be applied.

When a parameter for this command is set to —1 an attempt will be made to use the ex-
tended length commands for reading using buffer size equal to the size of the retrieved file.

When a parameter for this command is set to any other value attempts of using the ex-
tended length commands will be made if the given value is more than 256.

Since the support of extended length commands is optional and may be implemented not
by all chips, the evaluation of this characteristic is carried out by the results of the first at-
tempt of using such command. If the result of such command is unsatisfactory (the chip
returned an error code, incorrect or incomplete data have been read), the data reading
mode for this specific chip will be automatically transferred to using the commands of sin-
gle length.

If the chip has support of extended length reading commands, it will be indicated by
RFID Notification_PCSC_ExtLengthSupport notification message with a corre-
sponding value of the notification parameter (true or false).

To switch to the use of single length commands it may be necessary to reinitialize the
RFID-chip completely — to finish the current work session with a document and to open a
new one with preliminary correction of the reading data buffer size. In this case, the current
reading operation will be aborted with RFID_Error_ PCSC_ExtLe Failed return code
from RFID ExecuteCommand ().

5.4.5. Antenna Parameters

Removed since version SDK 3.5.

54 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

5.4.6. Completion of Work with RFID-chip

RFID_Command DocumentDone command serves for completion of each communication
session with the RFID-chip.

One of eRFID ManualChipDetectionMode values serves as the command parameter,
which sets the search mode for a new RFID-chip in the scope of the reader when working
in the mode of manual detection:

e ddmChipPowerOff - switch off the power without the search for a new chip;

e ddmDetectChip - search for the first chip among all those present in the
scope of the reader (with preliminary full disconnection of
the field — the removal of power for all present chips);

e ddmDummy - no actions to be carried out.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 55

5. WORKING WITH SDK

5.5. SDK PARAMETERS

5.5.1.Logging

To enable/disable SDK logging there is REID_Command_BuildLog command.

The operation log is a text file that records the sequence and all the results of intermediate
actions performed during the execution of SDK commands, including the contents of data
exchanged between the reader and the chip during the transmission of information be-
tween them.

RFID_Command UseDeviceDriverLog command is used to include information about the
operations performed at the device driver/firmware level in the generated work protocol.

The operation log begins to form after its activation and is constantly written to disk under
the name of RFID.log to the directory set by RFID Command LogDirectory com-
mand, or by default:

<local user profile>\AppDatal\Local\Regula\Debug\.

For immediate recording of the current contents of the log in the file with the specified
name there is RFID_Command_FlushLog command. After its execution formation of the
operation log begins anew.

5.5.2.The Parameters of the Passive Authentication

To verify the digital signature of document and master list security objects when perform-
ing passive authentication search for the corresponding certificates and check of their va-
lidity is carried out (see section 4.8.1).

As a source of certificates serves the local PKD copy — a database that is a set of binary files
of certificates, certificate revocation lists (CRL) [6] and master lists [34]. LDIF format [32] can
be used to represent the contents of master lists and ICAO PKD [33].

The path to the directory containing a set of PKD files for passive authentication is speci-
fied by RFID_Command_Set_PassivePKD command. The current value of this SDK pa-
rameter is requested by RFID_Command_Get_PassivePKD command. The directory de-
fined this way may contain any number of nested directories. Search for the required
certificates for the particular electronic document is carried out automatically.

Because both the PKD and the security object itself may serve as a source of DS-/MLS-
certificate for verification of digital signature of the security object, the priority of using a
certificate from a particular source is set by RFID Command Set DS _Cert Priority
command. The current value of this SDK parameter is requested by

56 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

RFID_Command_Get_DS_Cert_Priority command. The parameter value 0 of this com-
mand sets a priority of SO, 1 — PKD.

In both cases, the search for DS-/MLS-certificate will be performed first in PKD. If it is not
found there and priority of SO is set, DS-certificate from SO will be selected to perform PA.
Otherwise search for DS-/MLS-certificate will be completed with setting an appropriate er-
ror code.

To verify the digital signature of DS-/MLS-certificate CSCA-certificate is required. Though
for final decision-making on the success of such a check not only its formal passage is re-
quired, but also a certain level of trust to the source of the used CSCA-certificate. Since this
issue is the subject of policy for each individual terminal, the level of such trust can be de-
termined exclusively by the user software.

To set the necessary level of trust for the CSCA-certificates contained in the local PKD there
is RFID_Command_Set_TrustedPKD command. The current value of this SDK parameter
is requested by RFID_Command_Get_TrustedPKD command.

In case of absence of the required level of trust to the used CSCA-certificate the user appli-
cation will be informed by RFID Notification ISOError notification message with
ntfLDS_SOD_Signer_DSCert_RootIsNotTrusted code.

In a case of SOm. digital signature verification, corresponding CSCA-certificate can be in-
cluded in SOwm. data structure itself. It is possible to limit the use of CSCA-certificates sub-
mitted by individual data files only with RFID_Command_Set_UseExternalCSCA com-
mand. The current value of this parameter is requested by
RFID Command Get UseExternalCSCA command.

When determining inconsistencies associated with SOm. digital signature verification, all
certificates belonging to contents of the master list will be marked correspondingly and, in
the case of further use to verify SOp digital signature, user software will be informed by
RFID Notification_ISOError notification messages with following codes

ntfLDS Auth MLSignerInfo Certificate Validity

ntfLDS Auth MLSignerInfo Certificate RootIsNotTrusted
ntfLDS Auth MLSignerInfo Certificate CantFindCSCA
ntfLDS Auth MLSignerInfo Certificate Revoked

ntfLDS Auth MLSignerInfo Certificate Signaturelnvalid

5.5.3. Definition of the Local Public Key Certificates Library
for Terminal Authentication

To perform TA, the access to some additional resources is required: to TA-certificates for a
specific document and the corresponding private cryptographic key (see sections 4.7,
4.9.3). These resources are presented as a set of files.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 57

5. WORKING WITH SDK

CV-certificates are represented as files with the extension ".cvcert", containing binary TLV-
certificate data [24, part 3, §§ C.1, D]. The corresponding private key file must be coincident
with the certificate file name with the extension ".pkcs8" and contain binary key data in the
format specified in [10].

The path to the directory containing a set of files for TA is defined by
RFID_Command_Set_EAC_PKD command. The current value of this SDK parameter is re-
quested by RFID_Command_Get_EAC_PKD command. The directory defined this way may
contain any number of nested directories with a set of resources for various documents.
Search for the required elements among all available data for a specific electronic docu-
ment is carried out automatically.

58 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

5.6. ORGANIZATION OF WORK WITH ELECTRONIC DOCUMENT

5.6.1. Modes of Operation

Version 3.1 SDK provides three ways of working with the electronic document in the fol-
lowing modes:

e batch;

e session;

e scenario.

The batch operation mode allows automatic executing of all necessary authentication
procedures and data reading from the RFID-chip memory based on predefined set of ac-
tions and the provision of all required additional information (certificate chain for TA, data
access password for organization of SM-channel etc.).

The results of data reading in the batch mode become available only after the completion
of the reading command - after the return from the corresponding
_RFID ExecuteCommand () call.

This operation mode is fully consistent with SDK of the previous versions and is available
only for reading and authentication of electronic documents data containing ePassport
application [1], [2], [3].

The session operation mode provides maximum flexibility in organizing a communication
session with the electronic document with all supported types of applications (ePass-
port, eID, eSign, eDIL). It is based on the principle of organizing the document working
session. After session opening there is a possibility of an independent execution of individ-
ual operations (such as selection of the required application, reading of definite data
groups, authentication of the specified type, etc) for implementation of the necessary
working scenario with the document. In this case all the results of carrying out operation
immediately registered in the data object of the current session, always accessible to the
calling software.

The scenario operation mode is an adaptation of the batch mode for the session work
with electronic documents. It also provides automatic execution of all necessary authenti-
cation and data reading procedures based on a predetermined set of actions. All additional
information is required immediately prior to an action by the callback function.

Besides, in the scenario mode there is an opportunity to select not only a variant of CA or
TA procedure performance, but of PACE procedure as well.

Set of the necessary actions (scenario) is specified as XML-structure input parameter to the
corresponding _RFID ExecuteCommand () call, as well as input and output data that is
transferred via callback function parameter.

In the scenario mode, as in the batch mode, data readout result is accessible only after the
command execution.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 59

5. WORKING WITH SDK

5.6.2. Representation of Read Data

Data read from the RFID-chip can be represented as follows:

e as a list of binary data arrays, which are an exact copy of the data stored in the
memory of RFID-chip, without any additional formatting (TDocBinaryInfo with list
elements of TBinaryData type);

e as a list of structures, corresponding to different types of data. They do not contain
service information used when formatting to record in the chip memory (TDocBi-
naryInfo with list elements of TBinaryData type);

e as a list of binary data arrays, which are an exact copy of the graphic files stored in
the memory of RFID-chip (TOriginalRFIDGraphicsInfo with list elements of
TOriginalRFIDGraphics type);

e as a list of logically selected document filling fields that contain text and graphics in-
formation (TDocVisualExtendedInfo with list elements of TDocVisualExtend-
edField type, TDocGraphicsInfo with list elements of TDocGraphicField

type).

Each of the lists is represented by TResultContainer object. Type of the data represen-
tation is defined by eRFID ResultType values (result_type field contents).

Logical data type of the elements of TDocVisualExtendedField,
TDocGraphicField, TBinaryData, TOriginalRFIDGraphics is defined by the field
FieldType, which may contain one of eVisualFieldType,
eRFID VisualFieldType, eGraphicFieldType or eRFID DataFile_Type values.

The values eVisualFieldType and eRFID_VisualFieldType are used for designation
of TDocVisualExtendedInfo elements, eGraphicFieldType — for TDocGraphic-
sInfo and TOriginalRFIDGraphics elements, eRFID DataFile Type - for
TDocBinaryInfo elements.

It should be noted that for storage and transmission of data read by
RFID_Command ReadProtocol3 command, only the structure corresponding to
RFDP Raw type is wused. When performing sequential data reading by
RFID Command ReadProtocol3 and RFID Command ReadProtocol4 commands,
this structure stores the results of both commands in a merged list.

5.6.3. Data Reading Result Acquisition

Access to the results of the data read operation is performed as follows:

e in the batch mode the return value from RFID ExecuteCommand () function for
RFID Command ReadProtocol3/RFID Command ReadProtocol4 commands is

60 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

a pointer to TResultContainerList list object, containing elements for all data
representation types (see section 5.6.2);

e in the session mode the results of the ongoing operations are available all the time —
immediately after certain actions - through the pointer to the working
TRFID_Session object (see section 5.8.2);

e in the scenario mode the return value from RFID ExecuteCommand () function
for RFID_Command_Scenario_Process command is VARIANT *, which will point
to XML-representation of TRFID_Session structure containing results of the per-
formed data reading session (see section 5.9.3).

Furthermore, after the read operation in all modes of operation there is an additional
method of access to the results - with _RFID CheckResult() and
_RFID CheckResultFromList() functions, providing access to a copy of the data.

This mechanism is applicable for reception of XML-representation of the results as well.

As the input parameters _RFID_CheckResult () in type parameter a type of requested
data is accepted (one of eRFID_ResultType values), in output parameter — format of
returned data (one of eOutputFormat values) and in param — parameters of data trans-
fer (in the context of the value output).

If the value returned from _RFID CheckResult() is less than 0, it is one of
eRFID ResultStatus error codes.

If the value returned from _RFID_CheckResult () is larger than 0, it is actually a pointer
to TResultContainer structure, containing the requested data. It may be used directly,
casting to TResultContainer * type, or for access to the data fields contents separate-
ly, with the help of _RFID_CheckResultFromList () function (when requesting acquisi-
tion of the result RFID ResultType RFID TextData or
RFID ResultType RFID ImageData). In the second case a call of
_RFID CheckResult () function is an intermediate step for specific data acquisition.

As the input parameters, RFID_CheckResultFromList () accepts the descriptor of re-
sults list, received after _RFID CheckResult() call (container function parameter),
identifier of data transfer mechanism (one of eOutputFormatField values in output
function parameter) and parameters of data transfer (param, in a context of output pa-
rameter value). The value returned by the function contains a code of the transferred field
(one of eVisualFieldType, eRFID VisualFieldType or eGraphicFieldType val-
ues). In case of error or when the end of the field list is reached one of
eRFID ResultStatus values is returned.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 61

5. WORKING WITH SDK

Two ways of the transferring of result list fields contents are provided (is given in output
function parameter):
e through Windows clipboard (for text fields from ThocVisualExtendedInfo struc-
ture and graphic images from TDocGraphicsInfo structure);
e through a file (for graphic images from TDocGraphicsInfo structure).

In the first case param function parameter must contain a window handle (HWND), with
which the clipboard will be connected. In the second case — a pointer to the character
string containing the file name, which the image will be saved under. Graphic encoding file
format is selected on the basis of the file name extension. Commands
RFID Command_Set Graphics_CompressionRatio and
RFID Command_Get Graphics_CompressionRatio are used to set and read the level
of compression using the corresponding image recording formats (e.g., JPG).

A full list of graphic file formats extensions, available for use, can be received by
RFID_Command_Get_AvailableGraphicFormats command. A character string consist-
ing of three-letter graphic files extensions, separated by a symbol «;», for example, «<BMP;
JPG; TIF», is returned to the user application.

Thus, for acquisition of the contents of all text or graphic fields contained in the resulting
structures by the request to formation of RFDP_FullyParsed result, the following actions
are required:
1) call the _RFID_CheckResult () passing RFID ResultType RFID_TextData or
RFID_ResultType RFID_ImageData;
2) using the received descriptor, call the _RFID_CheckResultFromList () until the
moment of reaching the list end (RFID_ResultStatus_EndOfList return code).

After return from _RFID_CheckResultFromList () the requested data are either locat-
ed in the clipboard or saved in the file with the given name.

Providing one of the values ofClipboard XML, ofFile_XML or ofXML in the parame-
ter type of _RFID_CheckResult() function, formation of XML-representation of re-
quested type data structure will be performed. XML_buffer field of the returned
TResultContainer structure will be initialized by the respective pointer to the symbol
array. The size of the array will be specified in XML_length field of the same structure.

Giving ofClipboard XML the symbol array of XML result representation will be in addi-
tion stored in Windows clipboard, connected with the window, the handle of which (HWND)
has been specified in output parameter.

Giving ofFile_XML the symbol array of XML result representation will be in addition
stored in a text file. The pointer to the character string containing the file name must be
specified in the parameter output.

62 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021

63

5. WORKING WITH SDK

5.7. BATCH OPERATION MODE

5.7.1. Determination of RFID-chip Characteristics

After receiving of RFID _Notification_DocumentReady message the user application
can initiate the procedure of data reading from the RFID-chip memory. However, taking
into consideration the differences in the structure of data and parameters between differ-
ent types of RFID-chips (see section 4.1), it is required at first to determine the specific chip
type and its main characteristics, such as the amount of memory, supported communica-
tion protocols, the rate of data transmission/reception etc.

To receive information about the characteristic of the RFID-chip, located within sight of the
reader, there are commands:

e RFID Command Get ReadCardProperties

e RFID Command ReadCardPropertiesExt

e RFID Command ReadCardPropertiesExt2
(for readers with firmware version 21.00 and higher)

As a result of its execution user application receives a pointer to the corresponding data
structure:

e TRFCardProp
e TRFID CardPropertiesExt
e TRFChipProperties

containing information about chip's main characteristics.

The user application must build an algorithm of its work with electronic document based
on these data.

ATTENTION! Each time RFID_Command_Get ReadCardProperties command execut-
ed all data obtained during the previous reading are destroyed when reallocating memory
for the new result.

5.7.2. Data Reading via MIFARE® Classic Protocol

To read data from a chip that supports ISO/IEC 14443-3 (MIFARE® Classic Protocol) stand-
ard communication protocol there is RFID_Command ReadProtocol3 command. It is
available only for chips, TRFCardProp characteristic structure of which contains the value
true in the Support_Mifare field (see section 5.7.1).

64 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

Reading data by RFID_Command ReadProtocol3 command two elements in the list of
results are formed (in TDbocBinaryInfo structure — for the type of RFDP_Raw data repre-
sentation):

e read data;

e an array of flags of correctness of reading of each chip memory sector.

The type of these list elements is specified in FieldType field of TBinaryData structure,
which is the basic type for TDocBinaryInfo elements. It will contain df tMIFARE_Data
value for data, df tMIFARE_Validity — for flags of reading correctness.

For example, if the amount of chip memory 1 Kb, dftMIFARE_Data array will contain
1024 bytes of data, and dftMIFARE_Validity array — 16 bytes with the value 0, if the
respective sector was read with an error, or 1, if the data were read successfully.

During execution of RFID_Command_ReadProtocol3 command the user application will
receive RFID_Notification_ReadProtocol3 message, notifying about the beginning
and end of data reading operation.

Since the data recorded in the memory of such RFID-chips do not have standardized logi-
cal structure, their logical analysis by the SDK means is not performed and is prerogative of
the user application.

5.7.3. Authentication using MIFARE® Classic Protocol

The procedure of authentication for each sector of chip memory must precede any opera-
tion of data reading from the RFID-chip via protocol MIFARE® Classic Protocol.

Two 6-byte sequences — KeyA and KeyB — are used as the sector authentication keys.

Three authentication modes are provided by the SDK:

e by default — when the bytes sequences '0xFF OxFF O0xFF OxFF OxFF OxFEF' for
both keys are used as the keys for all sectors '0xFF OxFF OxFF OxFF OxFF
OxFF' (mkmDefault);

e using a single key for all memory sectors (mkmSingleKey);

e using a separate key for each of the memory sectors (mkmFullKeyTable).

By RFID_Command_SetMIFARE_KeyMode command the authentication mode type is set
specifying one of eMIFARE_KeyMode constants. By
RFID_Command_GetMIFARE KeyMode command the current value of authentication
mode is requested. By RFID_Command_SetMIFARE KeyTable command the values of
authentication keys are assigned. TMIFARE KeyTable structure is given as the parameter
of this command, containing two arrays of 40 six-byte keys (2 and B), which ensures cover-
ing of 40 memory sectors (up to 4 Kb). The first elements of these arrays are used in

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 65

5. WORKING WITH SDK

mkmSingleKey authentication mode as a single key. By
RFID Command_GetMIFARE KeyTable command the current values of authentication
keys are requested.

ATTENTION! Considering the peculiarities of the PC/SC-driver reader, starting with the
SDK version 3, support of the default authentication mode only is implemented. The user
application cannot influence this procedure.

5.7.4. Data Reading via ISO/IEC 14443-4 Protocol

To read data from the memory of RFID-chips that support the protocol ISO/IEC 14443-4,
there is RFID Command ReadProtocol4 command.

The user application must pass a combination of eRFID_DataGroups flags defining a set
of read data groups as a parameter of this command (see section 4.3.1).

The beginning of data reading operation and its end is marked by sending
RFID Notification_ReadProtocol4 message.

At the first stage of executing RFID_Command_ReadProtocol4 command the application
ePassport is selected and the operation of EF.COM service group reading is performed
to determine the set of present informational data groups.

The contents of EF.COM service data group will be stored in in the returned list of results
(the element with dftPassport_COM type in TDocBinaryInfo structure for
RFDP_BinaryParsed type of data representation).

If the command parameter (set of read groups) was given a value of 0 (NULL), there will be
return to the calling function of the user application after processing of EF. cOM. If, howev-
er, was given a non-zero data group combination, execution of the command
RFID _Command ReadProtocol4 will continue.

Reading of any informational data group will be performed if it is present in the chip
memory, and if it was specified in the command parameter. Otherwise, the element with
the appropriate data type will be missing in the generated list of results.

The beginning of the reading of any informational data group and its ending is marked
sending RFID Notification PCSC_ReadingDatagroup message. The code of read
file from the eRFID DataFile_Type is implemented (contained in the low order WORD)
in the code of this notification.

If a situation arises when RFDP_FullyParsed was chosen as one of the required types of
read data representation, but the main control library cannot recognize the encoding for-

66 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

mat of a graphic image, the user application receives announcement through
ntfLDS_UnsupportedImageFormat notification. However, this does not affect the for-
mation of results of other types.

A progress of the data reading command execution is marked with sending of
RFID Notification_Progress message. The numeric value that is passed with this
message defines the amount of read data in percent of the total data amount of the re-
quested information groups.

The RFID_Command_CancelReading command serves for interruption of the current
reading operation.

In case of a situation when the requested file is missing, the user application will be in-
formed by RFID Notification_PCSC_FileNotFound notification message with a file
code in the low order WORD.

In case of reaching the end of the file prior to receipt of the requested data amount the
user application will be informed by RFID Notification_PCSC_EndOfFile notification
message with a file code in the low order WORD.

In case of absence of access rights to the requested file for the terminal the user applica-
tion will be informed by RFID Notification_ PCSC_FileAccessDenied notification
message with a file code in the low order WORD.

The SDK provides possibility to read non-standard files, use of which is not provided by
specifications [2] and [3].

To identify such files when working in the batch mode there s
RFID Command_SetUserDefinedFilesToRead command. It uses a pointer to
TRFID FilesList list object as a parameter, which may contain description of up to
32 different files.

To include files from this list to the common RFID_Notification_ReadProtocol4
reading operation it is required to add RFDG_USER flag to the set of read groups.

Giving the corresponding element of the list of files with fidtLocal_Path value in
id_type field, for that file only the operation of selection without reading its contents will
be executed.

5.7.5. Protected Data Reading (BAC)

In case if the access to data in memory of the RFID-chip is protected using the BAC mech-
anism [3], it is necessary to present a special key sequence to read them, and this is the
text of the document MRZ previously read using the procedure of OCR.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 67

5. WORKING WITH SDK

The fact that data is protected is determined when attempting to read EF.COM. In this case
_RFID ExecuteCommand () will stop execution of RFID_Command ReadProtocol4
command, notify the user application by RFID Notification_SM_Required message
and return RFID_LAYER6_SECURITY_MANAGER code. The user application must set the
data access key for the current document and repeatedly execute
RFID Command ReadProtocol4 command.

To define the data access key there is RFID_Command_SetCryptKey command, to ac-
quire the current key value — RFID_Command_GetCryptKey.

The user application must present the full text of document MRZ in the array of 128 char-
acters. The recognized strings of MRZ must be placed starting from the very first array el-
ement, one after another, without additional separators. For example, for documents of
I1D-3 type, MRZ of which consists of two strings of 44 characters, the text of the first string
must be located from the 0 to the 43™ array element, the text of the second string — from
the 44" to the 87™. The contents of the remaining array elements are ignored.

ATTENTION! When working in the batch mode use of CAN and SAIl passwords for data
reading organization is not provided.

The user application is informed about the result of SM-channel opening (true or false)
by RFID Notification_SM Established notification message.

5.7.6. Protected Data Reading (EAC)

If access to the data in the RFID-chip memory is protected using EAC mechanism it is re-
quired to execute a number of additional procedures to read them.

According to [1] EAC mechanism may be used to restrict access to contents of informa-
tional data groups that contain biometric information on fingerprints (DG3) and iris (DG4)
of the DO and is used as a supplement to the mandatory implementation of BAC protec-
tion mechanism.

The very presence of EAC protection is defined by the presence of DG14 among the in-
formational data groups, which contains information about the used cryptographic algo-
rithms and keys.

ATTENTION! If DG14 data group was not included in the set of read data groups when
executing RFID_Command ReadProtocold4 command, the procedure of opening access
to EAC-protected data groups will not be performed and the results of their reading will
not be included in the total result.

68 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

To provide access to protected data groups, EAC-protection mechanism provides execu-
tion of two additional authentication procedures: Chip Authentication (CA) and Terminal
Authentication (TA).

ATTENTION! When working in the batch mode SDK supports only realization of EAC pro-
tocol (version 1.11).

CA is performed automatically — immediately after the successful setting of BAC access key
and successful data reading from DG14.

TA is performed later — after successful CA and after data reading of other information
groups, which are not protected by the EAC mechanism.

With the success of TA (if all the required additional resources exist and are valid), access
to protected data groups opened and their contents are read ordinary.

The user application will be informed about the beginning of any authentication procedure
by RFID Notification ACProcedure Start message with one of
eRFID AccessControl_ProcedureType constants in the low order WORD.
RFID Notification_ ACProcedure_Finish message informs about the procedure
completion and contains the status code of procedure execution (the corresponding value
from eRFID_ErrorCodes) as a parameter.

ATTENTION! If none of EAC-protected data groups was included in the set of read data
groups when executing RFID_Command_ReadProtocol4 command, TA procedure will
not be performed.

5.7.7. Passive and Active Authentication

To confirm the authenticity of data read from the memory of travel document RFID-chip,
as well as the belonging of the chip exactly to this document, a possibility is provided to
perform procedures of document passive and active authentication [3].

Passive authentication is to verify the integrity of data of information groups being read
by comparing the results of the comparison of hash-functions stored in EF.SOD service
data group at the stage of document personification, and the values computed over the
data acquired directly from the chip. In case of mismatch between these values for any in-
formation group one can say that the data have undergone a modification.

Besides, check of the digital signature of EF. SOD document security object is performed.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 69

5. WORKING WITH SDK

The procedure of passive authentication is performed when executing
RFID _Command _ReadProtocol4 command automatically in case if RFID-chip memory
has EF. SOD service data group.

Initial data from EF.sSOD will be put in the returning list of results as elements with
dftPassport_SOD type in TDocBinaryInfo structure for
RFID ResultType RFID RawData type of data representation (see section 5.6.2).

The beginning of the digital signature verification procedure for EF.SOD is accompanied
by sending of RFID Notification_PA_Request notification message. A pointer to
TPassiveAuthenticationData structure is passed as the message parameter, contain-
ing description of DS-certificate with the public key required for signature verification. The
need to use one of the variants of the public key locating (for Issuer and serial-
Number or subjectKeyIdentifier, see section 4.8.1) for the digital signature object is
determined by the contents of the respective fields in TPassiveAuthenticationData
structure.

The user application may either ignore this message or provide its own certificate by ini-
tializing the appropriate fields in the TPassiveAuthenticationData.

The beginning and the end of the procedure of formation of the corresponding certificate
chain (see section 4.8.1) is accompanied by sending of
RFID Notification PA CertificateChain notification message.

Active authentication is to verify the origin of the data stored in the memory of the RFID-
chip, in order to detect the fact of its reprogramming by the data from another document
(cloning).

The procedure of active authentication is also performed when executing
RFID _Command_ReadProtocol4 command automatically in case if the RFID-chip
memory contains EF.DG15 informational data group.

The results of passive and active authentication are stored in TRF Authentication
structure, which is put in the list of results as the element with dftAuthenticityV2 type
in TDocBinaryInfo structure for RFID ResultType RFID BinaryData data repre-
sentation type (see section 5.6.2).

ATTENTION! If EF.sSOD or DG14 were not included in the set of reading data groups
when executing RFID_Command_ReadProtocol4 command, the corresponding authenti-
cation procedure will not be performed, and the results of its performance will not be in-
cluded in the total result.

70 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

5.7.8. Data Reading Procedure Completion

Once the user application has received the results of data reading and performed their
processing, it must execute the command of reading procedure completion
RFID Command DocumentDone.

To ensure data integrity for their subsequent use it is recommended to create a copy of the ac-
quired results in the address space of the application, which performs MCL function call.

At the end of the batch reading operation some summary information about the performed
procedure is sent to the user application by a set of notification messages (Table 2).

Message Data (val contents)

RFID Notification PCSC_BytesReceived The total amount of data received from the RFID-
chip with respect to all service information, bytes

RFID Notification PCSC_TotalReadingTime The total data reading time, ms

RFID Notification PCSC DataReceived The total amount of information and service
groups data received from the RFID-chip, bytes

RFID Notification PCSC_BytesSent The total amount of data transmitted to the RFID-
chip, bytes

RFID Notification_PCSC_TotalReadingSpeed The average reading speed, kB/s - 1000

RFID_Notification_PCSC_TotalProcessTime The total run time of reading procedure, ms

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 71

5. WORKING WITH SDK

5.8. SESSION OPERATION MODE

5.8.1. Management of Document Working Session

After receiving RFID Notification_DocumentReady message the user application can
initiate the procedure of data reading from the RFID-chip memory or attempt to use any of
its functionality as a part of created document working session.

To open the session there is RFID_Command_Session_Open command. A pointer to
TRFID_Session object serves as the result of execution of this command, which will serve
as the operating object of the session during all time period of its activity (until the closing
by RFID_Command_Session_Close command).

All commands of work with session (session commands) require use of TRFID_Session *
received thus as the one of their input parameter, making their use available only in the
context of the current active session.

After closing of the session TRFID_Session contents will be available until the opening of
the new session of work with the document or wuntil the executing of
RFID Command ClearResults command.

5.8.2. Access to the Results of the Session

The results of execution of a session command is immediately registered in the respective
TRFID_Session object, which makes it possible for the user software to fully control the
process of interaction with the electronic document.

Results of referencing the resources of various applications of the electronic document are
registered in pApplications list: the contents of read files, the results of data analysis
and their logical parsing, etc. The elements of this list are pointers to
TRFID Application objects.

To store the results of file processing of the root Master File there is pRootFiles list. The
elements of this list are pointers to TRFID DataFile objects.

pAccessControls list is used for registration of the results of the various procedures of
authentication and secure data access. The elements of this list are pointers to
TRFID AccessControlInfo objects. Available variants for a particular procedure,
formed on the basis of the read data (for example, variants of CA procedure based on
EF.CardAccess and EF.CardSecurity service files reading), are registered in the cor-
responding list element (TRFID_AccessControlInfo.pOptions). The result of the
procedure is registered in TRFID_AccessControlInfo.Status field.

72 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

Information on document security objects found in the currently read data is registered in
pSecurityObjects list. The elements of this list are pointers to
TRFID _SecurityObject objects.

Status field corresponds to the result of execution of the last session command and may
contain one of eRFID ErrorCodes constants.

A more detailed description of assignment of fields of TRFID_Session structure is given
in the section 6.3.66.

In addition to the above working session object direct access, the contents of the corre-
sponding TRFID_Session object will be stored in the list of results as the element with
dftSession type in TDocBinaryInfo structure for
RFID ResultType RFID BinaryData data representation type (see section 5.6.2).

5.8.3. Opening of the Session and Determination
of Basic Functionality of the Electronic Document

When performing the command of session opening RFID Command_Session_Open the
following actions are performed automatically:

e determination of the characteristic of electronic document RFID-chip;
e selection of the root Master File;
e attempt to read EF.CardAccess service file to determine:
1) PACE support as a basic mechanism of SM communication channel organization
and the parameters of the procedure;
2) version of supported EAC procedures (CA, TA).

In the absence of EF.CardAccess or if there are any reading errors the further work with
a document is limited to the use of ePassport and eDL applications and EAC (version
1.11) only, for which the presence of that service file is not required.

Characteristic of the RFID-chip of the electronic document is registered in CardProper-
ties field of TRFID Session structure (see section 5.7.1). In addition, for readers with
firmware version 21.00 and higher, the information structure TRFChipProperties is
registered in pRootFiles list as an additional element with the dftChipProperties
type (see section 5.8.10, the contents of the structure are in the FileData field of this el-
ement).

pAccessControls list is filled with elements corresponding to all supported types of
procedures of authentication and secure data access: BAC/BAP, PACE, CA, TA, AA, and RI.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 73

5. WORKING WITH SDK

ATTENTION! Either in the absence of EF.CardAccess or if any critical data contents
analysis error appeared, the list element corresponding to PACE will not be included in
pAccessControls list.

In case of EF.CardAccess presence the following are determined in accordance with [23]
and [24]:

e available variants of PACE performance (version, algorithms);

e available variants of CA performance (version, algorithms);

e TA support (version).

This information may be updated later, based on reading other service files:
e EF.CardSecurity/EF.ChipSecurity (for CA, TA, RI);
e EF.DG14 from application erassport (CA, TA version 1);
e EF.DG15 from application ePassport (AA);
e EF.CVCA from application ePassport (TA version 1).

This is done automatically during the execution of RFID_Command_Session_ReadFile
command for the respective files.

In addition, for TA version 2, specification of the information about the available variants
takes place after successful completion of PACE procedure, as the chip responds with the
identifier of the working CVCA-key at that point.

Information on variants for a particular procedure is stored in
TRFID_AccessControlInfo.pOptions list of the corresponding element of pAc-
cessControls.

Pointers to TRFID AccessControl_Option objects are elements of this list, each of
which describes one available variant of procedure performance in the definite fields:

e Version — procedure version (for PACE, CA, TA);

e Scheme — algorithm of the used cryptographic scheme (CA, TA protocol) or TA public
key algorithm (is specified after the procedure itself); for PACE procedure contains
text identifier (OID) of the used public key standardized domain parameters;

e KeyAlgorithm— public key algorithm (for PACE, CA, AA, RI) or working CVCA-key
identifier (for TA);

e ChipIndividual — a sign of key usage availability for privileged terminals only (for
CA) [24, part 3, A1.1.7, A.1.2].

Note. A specification of the algorithm of applicable cryptographic scheme for TA occurs
directly during the procedure itself, because it depends on the contents of the cer-
tificate used by the terminal.

74 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

The presence of BAC support is considered constant for all electronic documents.

Actual requirement for BAC/BAP performance is determined during the process of reading
of any file that requires the organization of SM channel
(RFID_LAYER6_SECURITY_MANAGER return code for the reading command), and when
there is no PACE support of the electronic document.

After session initialization and prior to determination of a particular procedure support the
Status field of the respective TRFID _AccessControlInfo objects will contain the
RFID Error_NotAvailable value, after the time of support determination and to the
moment of the procedure — the RFID_Error_NotPerformed value.

In a case of CardInfoLocator data location in EF.CardAccess [24, part 3, A.1.1.5] an
individual data item with acptCardInfo procedure type is added into pAccessCon-
trols list. Its list of options consists of a single element, whose Scheme field contains URL
string, KeyAlgorithm— fid data, and ChipIndividual — sfid data of CardInfoLoca-
tor informational structure. This procedure type is for information purposes only and its use
for a real authentication procedure is ignored (see section 5.8.7).

5.8.4. Setting Terminal Configuration

The first mandatory operation after the opening of electronic document working session is
the operation of definition of terminal configuration.

This operation allows defining (or limiting) a set of informational and functional capabilities,
delegated by the electronic document and SDK to the current user (user software), by the
declared information on the terminal.

Restrictions on the use of certain capability by the terminal are imposed by the respective
specifications: [1], [23], [24], [25]. These restrictions are identified both on the logical level
of SDK operation (for example, right of using the passwords of different types for a par-
ticular terminal), and in the process of direct work with the document (in the effective ter-
minal authorization, see section 4.7, Table 1).

Definition the configuration of the terminal is performed by
RFID_Command _Session_SetTerminalType command.

TRFID Terminal object is used as the command parameter. It registers the declared
terminal type (one of eRFID_TerminalType constants) and the set of the required access
rights to the electronic document capabilities (combination of
eRFID TerminalAuthorizationRequirement) [24, part 3, §C.4]. Moreover, it can be
done either manually by initializing in a corresponding way TermType, AuthReq and
AuthReqg2 fields, or automatically, by specifying the full name of the respective terminal

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 75

5. WORKING WITH SDK

certificate file, containing all necessary information, in TermCert_FileName field (or plac-
ing its contents in TermCert_Data field). In the second case, TRFID_Terminal structure
will be automatically initialized on the basis of the certificate contents in the process of
command execution.

Note. RFID_Command_Session_SetTerminalType command requires no mandatory
presentation of a pointer to the open session object as a parameter and may only
be used to initialize TRFID_Terminal object by information contained in the given
terminal certificate.

Attempting to perform operation unauthorized for the current terminal type, in the further
work with the document the user software will receive an error code as a return code from
the SDK function, corresponding to the detected situation.

The terminal configuration established this way is registered in Session_terminal field
of TRFID_Session open session object.

5.8.5. Authentication Procedure Type Definition

The second mandatory operation after opening of electronic document working session is
the operation of authentication procedure type definition (see section 4.11). To perform
this operation there is RFID_Command_Session_SetProcedureType command. One of
eRFID_AuthenticationProcedureType values serves as the command parameter.

The type of ongoing authentication procedure affects some aspects of different SDK func-
tions (for example, the order of PACE performance for aptGeneral).

However, it used more for self-organization of user software to ensure strict compliance of
its operational logics with the standardized electronic document work procedures [1, 24].

The type of ongoing authentication procedure determined this way is registered in Ses-
sion_procedure field of TRFID_Session open session object.

5.8.6. Protected Data Access Key Definition

The third mandatory operation after opening of electronic document working session is
the operation of protected data access key definition (see section 4.4).

It is used to set type and value of the key used for organization of secure communication
channel between the reader and the RFID-chip when implementing the SM mechanism.

76 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

To perform this operation there is RFID_Command_Session_SetAccessKey command.
A pointer to TRFID_AccessKey object serves as the command parameter, specific fields
of which contains the given:
e accessType — type of the basic secure data access mechanism (acptBAC or acpt-—
PACE);
e keyType — access key type (one of eRFID_Password_Type values);
e AccessKey — key value.

When working with eSign application this command can be used for eSign-PIN initializa-
tion as well. In this case, the contents of accessType are ignored, and eSignPIN Index
field must contain the identifier of the used eSign-PIN (in SDK version 3.1 only the value 1
is supported).

When working with ePassport application CheckFullKeyMatching field can contain a
logical sign of the need for additional comparison of the full contents of AccessKey with
the contents of DG1 data group (MRZ).

The protected data access key defined this way is registered in Session_key field of
TRFID_Session open session object.

5.8.7. Authentication Procedures Performance

To perform all types of procedures of authentication and secure data access there is
RFID Command Session AccessControlProc command.

A pointer to TRFID_AccessControl_Params object, which identifies the type of the per-
formed procedure (ac_Type field), and its parameters (ac_Params fields), is used as the
command parameter.

Depending on the type of procedure when executing the command ac_Params contents
are interpreted in different ways:

e for BAC/BAP and AA the contents are ignored;

e for PACE field must contain a pointer to TPACE_SetupParams object;

e for CA — a pointer to TCA_SetupParams object;

e for TA — a pointer to TTA_SetupParams object;

e for Rl — a pointer to TRI_SetupParams object.

All information accompanying the performed procedure will be registered in the corre-
sponding TRFID_AccessControlInfo object — element of pAccessControls list of
the active session object.

If successful, the return code from SDK function of the procedure performance will be
RFID Error NoError value.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 77

5. WORKING WITH SDK

The beginning of the operation is marked with sending
RFID Notification ACProcedure_Start notification message to the user applica-
tion, its ending — with RFID_Notification ACProcedure_Finish. The low order WORD
of these notification codes contains the type of performed procedure (a value from
eRFID_AccessControl_ProcedureType) message parameter — the result of procedure
(a value from eRFID_ErrorCodes). The same result code is registered in Status field of
the corresponding TRFID_AccessControlInfo object.

The index of the active variant of the procedure is registered in ActiveOptionIdx field
of TRFID_AccessControlInfo object.

5.8.8.0rganization of Secure Data Access Channel

One of the main requirements for electronic documents is to implement a mechanism for
data exchange between reader and chip using secure communication channel.

BAC/BAP and PACE are the basic procedures for organization of such communications
channel.

RFID_LAYER6_SECURITY_MANAGER error code, which means the requirement of organi-
zation of secure communication channel, will be returned when trying to read data pro-
tected in this way, within the active session.

For PACE, ac_Params field of RFID Command _Session AccessControlProc command
parameters must contain a pointer to TPACE_SetupParams object, which determines the
chosen variant of the procedure in the list of available variants (i.e, in the list
TRFID_AccessControlInfo.pOptions of the corresponding pAccessControls ele-
ment of the current session object):

e index of the variant is specified in nOptionIdx field;

e skipCHAT — a sign that it is necessary to transfer CHAT data to the chip when initial-

izing the procedure (see section 4.7).

Note. The use of CHAT is mandatory only if TA shall be used after PACE. In other cases (for
example, when performing the procedure of temporary PIN resuming using CAN
password) CHAT usage is not recommended (i.e., skipCHAT must contain false).

If successful, the return code from SDK function of the procedure performance will be
RFID Error NoError value.

Any other error code will point to one or another problem that might appear, including those due to
incorrect value of the protected data access key. In the latter case, the user application may, for in-
stance, provide an opportunity to use a different key value or try to use the key of another type.

78 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

ATTENTION! In accordance with the requirements [24] SM-channel in the case of PACE,
must be organized prior to holding any communication with the chip apart from
EF.CardAccess reading (i.e, immediately after session opening and the performance of
three mandatory operations to its configuration, see sections 5.8.3-5.8.6). In case of BAC-
after executing the command of ePassport application selection.

Detection of the requirement for opening a secure communication channel is accompanied
by RFID Notification_SM Required notification message to the user application.

The user application is notified of the result of SM channel opening (true or false) by
RFID Notification_SM Established notification message.

If necessary, procedure of SM organizing will be performed after the first unsuccessful at-
tempt to read the protected data automatically, using the current assigned access key value.
In this case, the determination of the appropriate variant of PACE procedure is as follows:

e based on the contents of DefaultPACEOptionIdx field of TRFID_ AccessKey
structure used when specifying data access key (see section 5.8.6),

e when processing RFID_Notification_SM Required notification by setting the
index of appropriate variant of procedure by
RFID Command Set DefaultPACEOption command.

5.8.9. Application Selection

To access a particular function of the electronic document or to a file in its memory, it is
required to select the corresponding application first.

There is RFID_Command_Session_SelectApplication command for this.

A pointer to TRFID ApplicationID object, containing an identifier of the selected ap-
plication, is used as the command parameter. A zero value is used to select the root Master
File of the document.

In case of a successful operation a corresponding element will be stored in pApplica-
tions list of the session object. ActiveApplicationIdx field of the session object will
contain the index of the currently selected application in the list (or -1 for Master File).

For any outcome of the operation the user application will be informed by
RFID Notification PCSC_ApplicationSelected notification, containing an appli-
cation code in the low order WORD (one of eRFID_Application_Type values).

Note. ldentifiers of all supported by SDK standard applications are given in the module
RFID_Common.cpp/.h.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 79

5. WORKING WITH SDK

5.8.10. File Reading

The command RFID_Command_Session_ReadFile used to read the contents of a file
belonging to the currently selected application of the electronic document.

A pointer to TRFID_FileID object containing file description is used as the command pa-
rameter:
e pID field - file identifier;
e nLength - file identifier length;
e id_type - filetype (one of eRFID_FileID_Type values);
e SM_protected - an indicator that access to the file should be organized through a
secure SM-channel;
e FixedLength - fixed file length if it is known in advance or required a specific num-
ber of bytes to be read (0 — file length is automatically determined by the length of
the title tag of its contents in ASN.1 format).

Note. TRFID_FileID descriptions for all supported by SDK standard files are given in the
module RFID_Common.cpp/ .h.

In the process of file data reading the following actions are performed:

e formation of a binary array with the contents of read data;

e if necessary — automatic attempt to start BAC for the organization of a secure com-
munication channel;

e alogical analysis of the data to form a list of detected text or graphic document fields
or the formation (updating) of sets of the corresponding service session objects
(document security objects, variants of performing authentication procedures etc.);

e registration of critical and non-critical remarks of logical data analysis and perfor-
mance of actions along with sending the respective notification messages to the user
application;

e formation of the final result of the command.

TRFID DataFile object, containing the results of these actions, is stored in pFiles list
of the respective pApplications element of the session object. To store file objects from
the root Master File pRootFiles list of the session object is used.

The beginning of the reading of any file and its end is marked by sending
RFID Notification_ PCSC_ReadingDatagroup message. A code of read file (con-
tained in the low order WORD) from eRFID DataFile_Type enumeration is introduced in
the code of this notification.

Sending RFID Notification_Progress message marks a progress of command execu-
tion. The numeric value passed with the message, determines the amount of data read as a
percentage of the total amount of file data.

80 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

To interrupt the current operation there is RFID_Command_CancelReading command.

Depending on the type of file being read pParsedData field of TREID DataFile object
may contain a pointer to different data objects, which describe in detail the logical struc-
ture of the file contents.

Field value Pointer type Field value Pointer type
nType pParsedData nType pParsedData
dftPassport_COM TRF_EFCOM * dftPassport_DG1l6 TRF_EF DGl6 *
dftDL_COM
dftPassport_DG1 TRF_EF DGl * dftApp Directory TRFID Items List *
dftPassport_DG2 TREF_EF DG234 * dftID_DG1 TRF_EID_TEXT ARRAY *
dftPassport_DG3 dftID_DG2
dftPassport_DG4 dftID_DG3
dftDL_DG6 dftID_DG4
dftDL_DG7 dftID_DG5
dftDL_DG8 dftID_DG6
dftID_DG7
dftID_DG8
dftID_DG10
dftID _DG11
dftPassport_DG5 TREF_EF DG567 * dftID_DG9 TRF_EID_GENERAL PLACE *
dftPassport_DG6 dftID _DG17
dftPassport_DG7
dftDL_DG5
dftPassport_DG8 TREF_EF DG8910 * dftID _DG12 TRF_EID_OPTIONAL_DATA *
dftPassport_DG9 dftID_DG21
dftPassport_DG10
dftPassport_DG11 TRF_EF DG11 * dftID_DG13 TRF_EF_DG_BINARY_ARRAY *
dftID_DG14
dftID_DG15
dftID_DGl6
dftID _DG18
dftPassport_DG12 TRF_EF DG12 * dftID_DG19 TRF_EID_TEXT *
dftID_DG20
dftPassport DGI13 TRF_EF_DG_BINARY_ARRAY * | dftDL DG1 TRF_EDL_DG1 *

For other types of files pParsedData is used solely for the internal SDK operation.

nStatus fields of the respective elementary fields of logical data representation
(TRF_FT_BYTE, TRF_FT_WORD, TRF_FT _NUMBER, TRF_FT BYTES, TRF_FT_STRING) may
contain codes of detected inconsistencies of the contents to the requirements of one or
another specifications — the value from eLDS ParsingNotificationCodes or
errLDS Ok.

A set of informational data groups present in ePassport application can be defined in
two ways:

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 81

5. WORKING WITH SDK

e by the contents of EF.COM. For this it is required to read its contents and analyze the
acquired list of identifiers of the present data groups TRF_EFCOM.bDataGroup;

e by the contents of EF.SOD. After reading EF.SOD it is possible to check the pres-
ence of one or another data group hash value in its structure by special
RFID_Command_Session_PA_IsFileCheckAvailable. command. A pointer to
the file identifier TRFID_FileID serves as its parameter.

As a result of such analysis for ePassport and eDL applications an additional element of
dftApp Directory type included into pFiles list, which pParsedData contains a list of
identifiers of information data groups that are present in the application, automatically compiled
on the basis of the combination of read EF.COM and EF . SOD contents.

When working with the eID application there is no single method for determining the
presence of a file other than a direct attempt to read it. This is due to the fact that the ana-
logue of EF.COM (object storing a list of all present informational data groups) is not pro-
vided for the eID application by the standards [24] and [25], and the presence of data
group hash tables in the document security objects is not mandatory (as presence of hash
values for all present data groups in this table).

In case of a situation where the requested file is missing, the user application will be in-
formed by RFID Notification_PCSC_FileNotFound notification message with a file
code in the low order WORD.

In case of reaching the end of file prior to acquisition of all the requested amount of data
the user application will be informed by RFID Notification_PCSC_EndOfFile notifi-
cation message with a file code in the low order WORD.

In case if the terminal has no access rights to the requested file, the user application will be
informed by RFID Notification_PCSC_FileAccessDenied notification message with
a file code in the low order WORD.

5.8.11. Data Reading According to MIFARE® Classic Protocol

RFID_Command _Session_ReadMifare command used to read data from the chip that
supports communications protocol by the standard ISO/IEC 14443-3 (MIFARE® Classic Pro-
tocol).

The result is the formation of two elements:
e read data;
e arrays of flags of reading correctness for each chip memory sectors.

Corresponding TRFID DataFile objects are stored in pRootFiles list of the current
session object . The data type is specified in nType field of TRFID_DataFile structure:

82 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

e dftMIFARE_Data - for data;
e dftMIFARE_Validity - for flags of reading correctness.

Example: with chip memory amount 1 Kb, dftMIFARE_Data array will contain data of
1024 bytes, and dftMIFARE_Validity array — 16 bytes with the value 0, if the corre-
sponding sector was read with error, or 1, if the data were read successfully.

In the process of command execution, the wuser application will receive
RFID Notification_ReadProtocol3 message, informing about the beginning and the
end of data reading operation.

5.8.12. Passive Authentication:
Document Security Object Verification

While reading of service files as part of electronic document communication session, de-
tected document security objects are being registered in pSecurityObjects list of ac-
tive session. The copies of TRFID_SecurityObject are the elements of this list.

Each TRFID SecurityObject contains a list of its corresponding digital signature ob-
jects pSignerInfos, which in the most cases contains the only TRFID_SignerInfo Ex
element.

To check the document security objects as a part of passive authentication (see sec-
tion 4.8.1) there is RFID_Command Session PA_CheckSO command.

A pointer to TPA_Params structure, containing a description of the inspected SO, is used
as the command parameter:

e field SO_Index — index of the inspected SO in pSecurityObjects list of the active
session object;
e SI_Index — index of the inspected digital signature in pSignerInfos list of SO object.

During command execution the following actions are performed:
e search for DS-certificate for SO digital signature verification;
e search for CSCA-certificate for DS- certificate digital signature verification;
e structure analysis of the located certificates and their digital signatures verification;
e SO digital signature verification;
e registration of critical and non-critical remarks, arising during the actions, along with
sending the respective notification messages to the user application.

Certificate search for SO digital signature verification, the order of their use and CSCA-
certificate trust level accepted here correspond to the current parameters of PA (see sec-
tion 5.5.2).

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 83

5. WORKING WITH SDK

The need to use one of the variants of public key search (for Issuer and serialNumber
or subjectKeyIdentifier, see section 4.8.1) for the specific digital signature object is
defined by the contents of the respective fields in TRFID_SignerInfo_Ex structure.

For the user application there is a possibility to provide a set of certificates for SO
check directly to the input of the command. For this there are the corresponding
fields of TPA_Params structure. In this case, the user application is responsible for
the full validation of the certificates presented this way. On the side of the SDK it is
accepted on default that the presented certificates are deliberately authentic and
have maximum trust level.

The beginning and the end of the procedure of formation of the corresponding certificate

chain (see section 4.8.1) is accompanied by sending
RFID Notification PA CertificateChain notification, a type of the current pro-
cessing element of the chain is indicated by

RFID_Notification_PA_CertificateChainItemrmﬁﬁkaﬁon

The result of the check is stored in PA_Status field of the respective
TRFID_SignerInfo_Ex object, information about the used certificate chain — in pCer-
tificateChain field.

The user application will be informed about the operation outcome by
RFID Notification_PA_SecurityObjectCheck notification, containing in the low
order WORD a file type, on the basis of which inspected SO has been built (one of
eRFID DataFile_Type values). The message parameter will contain the result of the
procedure (corresponding value from eRFID_ErrorCodes).

5.8.13. Passive Authentication:
Data Informational Groups Integrity Verification

The second stage of the procedure of passive authentication is to verify the integrity
of informational data groups of the electronic document (see section 4.8.1). It is per-
formed by comparison of the computed hash values of actually read data with the
values contained in the document security objects and thus protected by using digi-
tal signature mechanism.

To perform this operation there is RFID_Command_Session_PA _CheckFile command.

As the command parameter a pointer TRFID DataFile * to the structure with descrip-
tion of the verifiable file, which is an element of pFiles file list of the respective applica-
tion of the current session, is used.

The result of verification is stored in PA_Status field of the respective TRFID DataFile object.

84 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

The user application will be informed about the operation outcome by
RFID Notification_PA_FileCheck notification, containing a file type in the low order
WORD (one of eRFID DataFile_Type values). The message parameter will contain the
result of the procedure (corresponding value from eRFID_ErrorCodes).

ATTENTION! In accordance with the requirements [2] and [3] the informational data groups in-
tegrity check for the ePassport application is mandatory. When working with the e D applica-
tion this procedure is not mandatory, because the list of individual hash values may be absent in
the presented document security objects [24] or may be incomplete [25].

RFID Command_Session_PA IsFileCheckAvailable command may be used as the
auxiliary command, by which it is possible to check the presence of a hash value of a par-
ticular data group in the structure of detected document security objects. A pointer to the
file identifier TRFID_FileID * serves as its parameter. RFID_Error_NoError return
code indicates a presence of the respective value (it means, of potential presence of the
data group itself in the memory of electronic document), RFID_Error_NotAvailable
code — its absence.

5.8.14. Chip Authentication Procedure

To perform the chip authentication procedure (see section 4.9.2) ac_Paramns field in the
parameters of RFID_Command_Session_AccessControlProc command must contain
a pointer to TCA_SetupParams object, which defines the chosen variant of performing
the procedure from the list of available variants (i.e., in
TRFID_AccessControlInfo.pOptions list of the respective pAccessControls ele-
ment of the current session object):
e Index of variant is given in the field nOptionIdx,
e TA_preliminary_step — an indicator to perform the TA preliminary stage as a part
of the EAC (version 2), which requires creation of ephemeral CA cryptographic
keys pair (see section 4.9.3).

Thus, when implementing the EAC (version 2), it is required to execute the command of CA
performance twice. The first time - as a part of TA preliminary step
(TA_preliminary_step = true), right before TA procedure itself, the second time — to
perform all the necessary operations of data exchange with the RFID-chip as a part of CA.

ATTENTION! In both calls, the command must be given the same index of variant of pro-
cedure performance.

In case of successful procedure performance the return code from the SDK function will be
RFID Error NoError value.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 85

5. WORKING WITH SDK

5.8.15. Terminal Authentication Procedure

TA procedure consists of three consequent steps:

o formation of certificate chain in accordance with the index of the selected variant of
procedure performance (actually — in accordance with the selected identifier of the
public CVCA-key) and its verification by the RFID-chip;

e formation of special data token (challenge) and its digital signature generation using
the terminal private key;

e challenge’s digital signature verification by the RFID-chip.

To perform terminal authentication procedure (see section 4.9.3) ac_Params field in the
parameters of RFID Command_Session_AccessControlProc command must contain
a pointer to TTA_SetupParams object, which defines the chosen variant of performing
the procedure from the list of available variants (i.e., in
TRFID_AccessControlInfo.pOptions list of the respective pAccessControls ele-
ment of the current session object) and the parameters of procedure performance:
e index of variant is given in the field nOptionIdx;
e ProcessType — the order of procedure performance (one of
eRFID TerminalAuthenticationType values);
e PACE_StaticBinding — a sign of PACE static binding, determines the method of
the data token composition for the digital signing [24, part 1, §3.5];
e TA_StepData — configuration of another TA step when working in step-by-step
mode without using the callback-function;
e VerificationData — contents of auxiliary data provided for the following verifica-
tion (see section 4.10.2).

Several variants of TA procedure performance are possible, which are defined by the corre-
sponding constant in ProcessType field:

e default mode (tatDefault), when execution of all procedure steps takes place au-
tomatically, using the available resources of the local PKD (see sections 4.9.3, 5.5.3);

e Online-authentication mode (tatOnline), when call of user callback-function pre-
cedes each step with request of the respective parameters;

e interruptible step-by-step operation mode (tatStepByStep), when return from the
SDK function occurs after execution of each step (call of callback-function is not per-
formed). In this variant execution of the next TA step means only a repeated execu-
tion of the command RFID_Command_Session_AccessControlProc with updat-
ed input data, which are necessary for the next step of procedure.

In both variants of step-by-step TA performance the data for another step of procedure
are transferred by TTerminalAuthenticationStepData structure.

With Online-authentication a pointer to this structure is transferred in the parameter of
RFID Notification_TA_Step notification message. The user application must initialize

86 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

the respective fields of structure by the given pointer and only after this perform return
from the callback-function, providing thus execution of the next step.

In case of interruptible step-by-step mode the input data of each procedure step are trans-
ferred by contents of TA_StepData field of the input command parameters .

The identifier of the required public CVCA-key becomes known to the user application
from the contents of KeyAlgorithm field of the selected TA procedure performance
variant (see section 5.8.3). It will be also stored in TTerminalAuthenticationStep-
Data.CAR field with the first arrival of RFID_Notification_TA_Step notification.

When organizing step-by-step work the user application must independently perform
search of the corresponding certificates and terminal private key and transfer these data to
the SDK by the individual fields of TTerminalAuthenticationStepData structure
provided for it.

For the first step of TA procedure repeat iterations (RFID_Notification_TA_Step noti-
fications or returns from the SDK function) will occur as long as the user application does
not pass null pointers for the input of data, which will be a signal to move to the next step
procedure. This, for example, enable the use of the required number of CVCA-Link-
certificates.

After successful completion of certificate chain verification by the RFID-chip the challenge
data will be composed. Challenge field in TTerminalAuthenticationStepData will
describe its contents.

If the user application is not required to obtain a signed data itself but its already comput-
ed hash (for [36] requirements), this option can be selected with
RFID Command Set OnlineTAToSignDataType command. In this case, the hash val-
ue will be placed in the field Challenge too.

Having received these data during the second step of procedure, the user application can
independently generate digital signature and store its value in the TTerminalAuthenti-
cationStepData (Signature field).

Another variant for this is to specify the data of terminal private key during the first step. In
this case challenge’s digital signature may be formed by the SDK. For this the user applica-
tion must keep the contents of Signature empty.

The third TA step is performed automatically, without additional requests to the user software.

Note. Responsibility for allocating and freeing memory for storing the input data of TA
procedure in TA StepData structure lies on the user's application.

In case of successful procedure performance the return code from the SDK function will be
RFID Error NoError value.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 87

5. WORKING WITH SDK

ATTENTION! In case of failure of TA procedure without PACE static binding retrying with
the option of static binding will be carried out automatically.

All detected critical and non-critical remarks during the process of logical data analysis (in-
cluding the data specified by the user) and other actions performed during the procedure,
will be registered in the respective TRFID AccessControl_Option along with a notifica-
tion of the user application by notification messages.

5.8.16. Active Authentication Procedure

When performing active authentication procedure (see section 4.8.2), the contents of the
ac_Params field in the parameters of RFID_Command_Session_AccessControlProc
command are ignored. Here it means that the variant of the AA performance can be only
one and it is determined by the contents of EF.DG15 informational data group of ePass-
port application.

In case of successful procedure performance the return code from the SDK function will be
RFID Error NoError value.

5.8.17. Restricted Identification Procedure

To perform the procedure of restricted identification (see section 4.10.1) ac_Params field
in the parameters of RFID_Command _Session_AccessControlProc command must
contain a pointer to the object TRI_SetupParams, which defines the chosen variant of
procedure performance from the list of available variants (i.e, in
TRFID_AccessControlInfo.pOptions list of the respective pAccessControls ele-
ment of the current session object) and the parameters of procedure performance.

Index of variant is given in the field nOptionIdx.

The contents of RI public keys to be sent to the chip are specified in SectorKeyl and
SectorKey?2 fields, or names of the respective files with public keys data are given in
SectorKeyl_FileName and SectorKey2_FileName fields.

Key contents representation is allowed in a form of ASN.1-object SubjectPublicKey-
Info [6, § 4.1] orin a form of the respective public key data TLV-object [24, § D.3].

In case of successful procedure performance the return code from the SDK function will be
RFID Error NoError value.

The result of command execution (terminal sector identifiers) is stored in SpecificDatal
and SpecificData?2 fields of TRFID AccessControlInfo object, corresponding to
the R, in pAccessControls list of the current session object.

88 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

After reception of each of two possible terminal sector identifiers from the RFID-chip call
of callback-function of the user application takes place with
RFID Notification RI_SectorID notification code, containing identifier type in the
low order WORD (one of eRFID_SectorKeyType values). A pointer to the respective
TRF_FT_BYTES object with identifier contents is transferred as the function parameter.

Processing this call the user application is able to perform search of sector identifier in the local
revocation database (see section 4.10.1) and specify the result of this search
(RFID Error_Failed, RFID Error NotAvailable or RFID Error NoError) in nType
field of TRF_FT BYTES object. Herewith completeness and logical integrity of the results of
work with electronic document is preserved within the context of the current session. By de-
fault nType field contains RFID_Error_NotPerformed value.

5.8.18. Auxiliary Data Verification

To perform auxiliary data verification within the context of TA procedure (see section 4.10.2)
there is RFID_Command_Session_Verify command. One of eRFID AuxiliaryDataType
values serves as its parameter, which defines the type of data to be verified.

Auxiliary data verification of each specific type becomes available only if the respective data
were defined in the input parameters of TA procedure (in VerificationData field of
TTA_SetupParams structure — see section 5.8.15).

The contents of verified data are stored in VerifiedData field of the current session ob-
ject, which is TTerminalVerificationData object, the result of command execution
(RFID Error Failed, RFID Error NoError or by default
RFID Error NotPerformed) - in nType field of the respective subfield of
TRF_FT BYTES in VerifiedData.

The user application is notified about the results of verification by
RFID Notification AuxiliaryDataValidation notification message, containing the
result code and the type of verified data (in the low order WORD) in the notification parameter.

5.8.19. Data Informational Group Contents Update
(elD application)

For the terminal having relevant rights according to the results of effective authorization
(see section 4.7), there is a possibility to update the contents of DG17-DG21 informational
data groups the eID application.

RFID_Command_Session WriteFile command serves for updating a file with new
contents. A pointer to TRFID FileUpdateData structure serves as its parameter, defin-
ing the type of file to be updated (FilelD field) and its new contents (Data field).

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 89

5. WORKING WITH SDK

In case of successful procedure performance the return code from the SDK function will be
RFID Error NoError value.

5.8.20. Password Management

For the terminal having relevant rights according to the results of effective authorization (see
section 4.7), there is a possibility to execute a number of management functions for protected
data access keys (see section 4.5.1) or for eSign-PIN management (see section 4.5.2).

The following are included in the set of respective commands:

e RFID Command_Session_Password_ChangePIN - change of PIN. A pointer (char *)
to the character string with a new password value is transferred as the command parameter;

e RFID Command Session_Password ChangeCAN - change of CAN. A pointer (char *)
to the character string with a new password value is transferred as the command parameter;

¢ RFID_Command_Session_Password UnblockPIN - PIN unblocking;

e RFID Command Session Password ActivatePIN- PIN activation;

e RFID Command Session Password DeactivatePIN - PIN deactivation;

¢ RFID_Command Session_eSign_CreatePIN - eSign-PIN generation;

e RFID_Command_Session_eSign_ChangePIN - eSign-PIN change;

e RFID_Command_Session_eSign_UnblockPIN- eSign-PIN unblocking;

e RFID_Command _Session_eSign_TerminatePIN- eSign-PIN terminating.

In all commands of eSign-PIN management a pointer to TRFID_eSignPINParameters
object serves as an input parameter, containing key identifier in PIN_Id field (for SDK ver-
sion 3.1 only value 1 is supported), and in PIN_new field — the new password d value (for
commands of eSign-PIN change and creation).

Note. The working eSign-PIN value is assigned by RFID_Command Session_SetAccessKey
command (see section 5.8.6) and is automatically stored in Session_eSignPIN
field of the current session object.

In case of successful procedure performance the return code from the SDK function will be
RFID Error NoError value.

5.8.21. eSign Application Management and Usage

For the terminal having relevant rights according to the results of effective authorization
(see section 4.7), there is a possibility to execute a number of functions on management of
eSign application and use of its function of data digital signature.

RFID Command_Session_eSign_GenerateKeyPair command serves for creation of
eSign cryptographic keys pair, RFID_Command_Session_eSign_TerminateKeyPair
command - for its termination (deactivation of eSign application). The parameter of both

920 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

commands is a pointer to TRFID_eSignKeyParameters structure, containing identifier
of a key pair in the key_1d field (in SDK version 3.1 only the value 1 is supported).

The contents of the created public key are stored as TRFID DataFile object in pFiles
(list of esign application files) of the respective element of pApplications list of the
current session object. Here, the value dft eSign PK is given as the file type
(TRFID_DataFile.nType).

The operation of eSign-PIN verification must precede the procedure of data digital signa-
ture generation. For its performance there is
RFID_Command _Session_eSign_VerifyPIN command. A pointer to
TRFID_eSignPINParameters object serves as the input parameter, containing key iden-
tifier in PIN_1d field (for SDK version 3.0 only the value 1 is supported). The current value
of verified eSign-PIN is assigned by RFID_Command_Session_SetAccessKey com-
mand (see section 5.8.6).

In case of successful performance of eSign-PIN verification (the return code from the SDK
function will be RFID Error NoError value) it becomes possible to execute the com-
mand of the data digital signature generation -
RFID_Command _Session _eSign_SignData. TCustomRawData structure is the com-
mand parameter, containing data to be signed.

The contents of the generated digital signature are stored as TRFID_DataFile object in
pFiles (list of eSign application files) of the respective element of pApplications list
of the current session object. Here, dft eSign SignedData value is given as the file
type (TRFID_DataFile.nType). The digital signature data are stored in
TRFID_DataFile.FileData, and the data to be signed —in TRFID_DataFile.FilelD.

5.8.22. Saving and Loading of Work Session Data

SDK has a possibility of representing a complex data structure of session work
(TRFID_Session object) as the integral memory block. It gives a possibility, for example,
to save results of session work in a file and then reload them from there, receiving a possi-
bility of full data analysis at any time, outside the context of a real communication session
with electronic document.

To present TRFID Session object as the integral memory block there s
RFID Command _Session_SaveData command.

A pointer to TRFID_Session working session object serves as the input parameter of the
command (parameter result of RFID_ExecuteCommand () function).

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 91

5. WORKING WITH SDK

TCustomRawData * — a pointer to the container of binary data is used as the output pa-
rameter of the command (parameter params of RFID_ExecuteCommand () function).

TCustomRawData.buffer must contain a pointer to a memory area dedicated for re-
ceipt of data of session object, TCustomRawData.length — the length of dedicated
memory fragment.

If the command input receives TCustomRawData with zero buffer value or the size of
presented memory block is insufficient for acceptance of all data, the required size of
memory block will be specified in 1ength field when returning from the function. In this
case the user application may perform allocation of the given memory amount and re-
peatedly execute the command for acquisition of correct result.

To create TRFID_Session object on the basis of the existing integral block of data there
is RFID Command_Session_LoadData command.

TCustomRawData * — a pointer to the source of binary data is used as the input parame-
ter of a command (parameter params of _RFID_ExecuteCommand () function).

An address of the pointer to the created session object (TRFID_Session **) serves as
the output parameter of the command (parameter result of
_RFID ExecuteCommand () function).

TRFID_Session object created this way will fully correspond to the results of the original
communication session with electronic document. VirtualMode field will contain the val-
ue TRUE, indicating a «virtuality» of the session under presentation. Here, no SDK session
commands will be available for it.

Note. Memory allocation for storing of integral data block always takes place on the side
of the calling application.

92 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

5.9. SCENARIO OPERATION MODE

5.9.1.Working Scenario
5.9.1.1. Scenario Structure

SDK scenario is an XML-based structure which defines the basic parameters of ongoing
session of work with the electronic document:

e terminal configuration (see section 5.8.4),
e authentication procedure type (see section 5.8.5),
e secure data access key (see section 5.8.6),
e set of the reading data groups (see sections 5.8.9, 5.8.10),
e the need of performing the procedures of restricted identification
(see section 5.8.17) and auxiliary data verification (see section 5.8.18)
etc.

The structure of the scenario is of the form:

<arbitrary root node name>
<parameter node O>value</parameter node 0>

<component parameter node i>
<nested parameter node 0>

<nested parameter node j>
</component parameter node i>

<parameter node N>3nHaueHnme</parameter node N>
</arbitrary root node name>

Scenario parameters can be integral, containing a single value, and composite, consisting
of several nested parameters. They are divided into several groups that define a particular
aspect of the functioning of the SDK during the session of work with the electronic docu-
ment (see section 5.9).

Note. In SDK version 3.4 scenario mode provides support for a session to read data only.
Support for working with eSign application, as well as password management op-
erations and ability to update eID application data group content is absent in this
mode.

5.9.1.2. Terminal Type Definition

Parameters used to define the terminal configuration when initializing TRFID Terminal
structure (see sections 5.8.4, 6.3.83):

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 93

5. WORKING WITH SDK

<TerminalManualConfig>
logical sign of a manual terminal characteristics definition — true (manual) / false (au-
tomatic)

<TerminalCertificate>
file name of the CV-certificate, on the basis of which the characteristics of the terminal
will be determined (for automatic mode)

<TerminalType>
terminal type (numeric value of the corresponding constant)

<UniversalAccessRights>

logical sign of the use of the universal access rights to the capabilities of electronic doc-
ument («all inclusive» mode). If false, set of access rights will be composed on the ba-
sis of the following options:

e rights for reading data groups (ePassport, eID applications) formed on the ba-
sis of actually requested in the current reading session (see below)

e rights to use the functionality of the electronic document for AT terminal (see
section 4.7) — based on the following parameters (all values of true/false)

<Authorized Install QCert>
<Authorized Install Cert>
<Authorized PIN Managment>
<Authorized CAN Allowed>
<Authorized PrivilegedTerminal>
<Authorized RestrictedIdentification>
<Authorized Verify CommunityID>
<Authorized Verify Age>
<Authorized Write DG17>
<Authorized Write DG18>
<Authorized Write DG19>
<Authorized Write DG20>
<Authorized Write DG21>

e rights to use the functionality of the electronic document for ST terminal (see sec-
tion 4.7) — based on tthe following parameters (all values of true/false)

<Authorized ST Signature>
<Authorized ST QSignature>

5.9.1.3. Authentication Procedure Type Definition

Parameters used to define the authentication procedure type
(see section 5.8.5):

<AuthProcType>
authentication procedure type, conducting which is expected in the presence of all the
objective conditions

94 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

5.9.1.4. Base Secure Data Access Channel Mechanism Definition

Parameters used to define the priority mechanism for organizing the secure SM-channel:

<BaseSMProcedure>
type of priority mechanism for organizing SM-channel

5.9.1.5. Secure Data Access Key Definition

Parameters used to define the secure data access key (see section 5.8.6):

<PACEPasswordType>
data access type for PACE procedure (numeric value of the corresponding constant)

<MRZ>
full document MRZ text in accordance with requirements set in section 5.7.6

<Password>

text string of the data access key, other than MRZ (CAN, PIN, PUK)

<FullMRZMatching>

logical sign of the need for additional comparison of the full contents of the given MRZ
string with the contents of DG

<AlwaysAskForMRZ>

logical sign of the need to request a custom application to provide the data access key
before its actual use in the organization of SM-channel

5.9.1.6. Terminal Authentication Procedure Parameters

Parameters used during the procedure of terminal authentication (see section 5.8.15):

<OnlineTA>
logical sign of the Online-authentication performance

<PACE StaticBinding>
logical sign of forced use of static binding with PACE

5.9.1.7. Verifiable Auxiliary Data Definition

Parameters used during the procedure of auxiliary data verification (see section 5.8.18):

<AuxVerification CommunityID>
logical sign of the need to verify Community ID

<AuxVerification DateOfBirth>
logical sign of the need to verify the age of the document holder

<AuxVerification DateOfExpiry>
logical sign of the need to verify the validity period of the document

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 95

5. WORKING WITH SDK

<AuxVerification CommunityID Data>

string containing verifiable Community ID data. The string format - hex image of the
contents, 2 characters per byte, with no spaces (for example — «40414243» to ASCII-
character string «ABCD»)

<AuxVerification DateOfBirth Data>
string containing the verifiable date in format YYYYMMDD

5.9.1.8. Passive Authentication Procedure Parameters

Parameters used during the procedure of passive authentication (see sections 5.8.12,
5.8.13):

<PassiveAuth>
logical sign of passive authentication performance

5.9.1.9. Active Authentication Procedure Parameters

Parameters used during the procedure of active authentication
(see section 5.8.16):

<SkipAA>
logical sign of the cancellation of active authentication procedure after the successful
performance of chip authentication (CA) procedure

5.9.1.10. Restricted Identification Procedure Parameters

Parameters used during the procedure of restricted identification (see section 5.8.17):

<Perform RestrictedIdentification>
logical sign of restricted identification procedure performance

<SectorPKCertificatel>
first Rl public key filename

<SectorPKCertificate2>
second RI public key filename

5.9.1.11. Definition of the Set of Informational Data Group to Read

Parameters used to define the set of informational data groups (see section 5.8.10):

<ePassport>
<DGl>true/false</DG1l>

<DGl6>true/false</DG1l6>
</ePassport>

for ePassport application

96 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

<elD>
<DGl>true/false</DG1l>

<DG21>true/false</DG21>
</elID>

for eID application

5.9.1.12. Parameters for Data Reading According to ISO/IEC 14443-3

Parameters used during the data reading according to ISO/IEC 14443-3 standard
(see section 5.8.11):

<Read 3>
logical sign of the need to read data

5.9.2.Scenario Composition

The scenario of the SDK generated by user application in accordance with the specified
configuration.

To aid in the formation of scenario XML-structure RFID_SDK UI.d1l1 library serves, ex-
porting special RFID UI_ Helper ManageSetup () helper function. One of its parame-
ter is a sign of the need to display a window that allows visually specify the contents of the
script in a dialogue with the user. As another parameter VARIANT *setup xml var
pointer appears, which points to a text string of scenario XML-structure. If provided set-
up_xml var is empty, the scenario will be created with default values for all parameters. If
it already contains the correct scenario XML-structure — it contents will appear in the call-
ing dialog exactly. When finished using the setup dialog box scenario XML-structure with
the specified parameters will be placed in setup _xml var container to return to the call-
ing application.

Note. All operations of memory initialization and reallocation with the VARIANT held by
the SDK and should be performed by the user application using the appropriate
functions of Windows API.

The library RFID_SDK_UI.d11 developed for the dynamic connection using Windows API
LoadLibrary () function. Pointers to exported functions can be obtained using Windows
APl GetProcAddress () function.

After loading the library into memory it is required to make a call to the initialization func-
tion RFID UI Helper Initialize().

At the end of the work with the library it is required to call _RFID UI Helper Free ()
function and unload the library from memory using Windows APl FreeLibrary () func-
tion.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 97

5. WORKING WITH SDK

5.9.3.Scenario Execution

To run the scenario there is RFID_Command_Scenario_Process command. As a pa-
rameter it takes char * pointer to a text string of XML-scenario (UTF8 coding support-
ed).

When running the script there is a certain sequence of actions additionally concerted with
the parameters specified in the scenario XML-structure:

opening the session, searching and reading EF.CardAccess file to determine
whether PACE procedure supported, the variants for its conduct (see section 5.8.3)

setting the terminal type (see section 5.8.4)

setting the authentication procedure type (see section 5.8.5). Since the possibility of
one or another procedure type depends on objective conditions (presence of cer-
tain files, support for specific versions of secure data access procedures by the elec-
tronic document, etc.), if the specified authentication procedure cannot be per-
formed, the rollback mechanism to the next available variant is used.

setting the secure data access key (see section 5.8.6)

conducting PACE procedure if it is supported by the electronic document and when
chosen as a priority mechanism for SM-channel organization (see section 5.8.8)

conducting version 2 TA procedure (see section 5.8.15) and the preliminary step of
version 2 CA procedure (see section 5.8.14). Setting auxiliary data for verification
(see section 5.8.18)

in the case of general authentication procedure - searching and reading
EF.CardSecurity n EF.ChipSecurity files, an update on their basis a list of
available CA procedure variants, verification of the digital signatures of the corre-
sponding document security objects as a part of PA procedure (see section 5.8.12)

in the case of general authentication procedure — conducting version 2 CA proce-
dure (see section 5.8.14)

conducting restricted identification procedure (see section 5.8.17)
for AT terminal — auxiliary data verification (see section 5.8.18)

selecting ePassport application, searching and reading EF . SOD file, an update on
its basis a list of available informational data groups (see section 5.8.10), verification
of the digital signature of the corresponding document security object as a part of
PA procedure (see section 5.8.12)

in the case when BAC selected as a base SM mechanism, the procedure of opening
a secure data access channel conducted upon the first attempt of secure data read-
ing (EF.COM) (see section 5.8.8)

searching and reading EF.COM 1 EF . DG1 files (regardless of the user's choice). Up-
dating the list of informational data groups available for reading. Errors of reading
data files are critical, and, if they occur, further work is interrupted

98

Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

e searching and reading EF.DG14 file (regardless of the user's choice), an update on
its basis a list of available variants of version 1 CA procedure

e conducting version 1 CA procedure (see section 5.8.14)

e checking the integrity of previously read informational data groups (DG1, DG14) as
a part of PA procedure (see section 5.8.13)

e searching and reading EF.DG15 file, checking its data integrity as a part of PA pro-
cedure, determination of the capability and the variant of AA procedure, conducting
AA procedure (see section 5.8.16)

e searching and reading of informational data groups files defined by user (if actually
available) that are not protected by EAC mechanism, their data integrity check as a
part of PA procedure (see section 5.8.13)

e if version 1 TA needed — searching and reading EF . CVCA file to determine the pub-
lic key identifier. Conducting version 1 TA procedure (see section 5.8.15)

e searching and reading of EAC-sensitive informational data groups files defined by
user (if actually available) that are not protected by EAC mechanism, their data in-
tegrity check as a part of PA procedure

e selecting eID application, searching and reading of informational data groups files
defined by user, their data integrity check as a part of PA procedure when corre-
sponding hash-values are present in EF.CardAccess (see sections 5.8.10, 5.8.13)

e selecting eDL application, searching and reading EF. SOD file, an update on its ba-
sis a list of available informational data groups (see section 5.8.10), verification of
the digital signature of the corresponding document security object as a part of PA
procedure (see section 5.8.12)

e in the case when BAP selected as a base SM mechanism, the procedure of opening
a secure data access channel conducted upon the first attempt of secure data read-
ing (EF.COM) (see section 5.8.8)

e searching and reading EF.COM 1 EF.DG1 files (regardless of the user's choice). Up-
dating the list of informational data groups available for reading. Errors of reading
data files are critical, and, if they occur, further work is interrupted

e checking the integrity of previously read informational data groups (DG1) as a part
of PA procedure (see section 5.8.13)

e searching and reading of informational data groups files defined by user (if actually
available) that are not protected by EAP mechanism, their data integrity check as a
part of PA procedure (see section 5.8.13)

e data reading according to MIFARE® Classic Protocol.

As an output parameter of RFID_Command_Scenario_Process command also acts
char ** pointer, which will point to the XML-representation of TRFID Session struc-
ture filled with the results of the data reading session
(see section 5.8.2).

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 99

5. WORKING WITH SDK

Furthermore, as in the session mode, after the command completion the contents of the
corresponding TRFID_Session object will be stored in the list of results as the element
with dftSession type for RFID ResultType RFID BinaryData data representation
type (see section 5.6.2).

5.9.4.Scenario Requests

5.9.4.1. Structure and Mechanics of the Request

During the scenario execution, when the number of points that require or allow user (user
application) interaction reached, the call of notification callback-function is performed with
RFID Notification_Scenario notification code. A pointer char ** containing a
pointer to the XML-string defining a concrete scenario step acts as a parameter (memory
management is on the side of SDK library). Data required by SDK from the user applica-
tion on a specific step are to be placed into the same scenario step XML-structure and
passed back through the contents of the same char ** (memory management is on the
side of the user application).

These steps of the scenario are:

e the need to change access key to the protected data and/or its value that occurs
when an attempt to organize SM-channel failed or when the user application de-
mands such request explicitly, before SM-channel establishing,

e the need to choose the variant of one or another authentication or secure data ac-
cess procedure (PACE, CA, TA, RI),

e the possibility or need to use user data in the implementation of the authentication
or secure data access procedure (TA, RI, PA).

In case when the user application cannot provide the required data or for some reason re-
turns an empty scenario step XML-string, further SDK actions are determined based on
their default order: either available data or settings used or reading operation interrupted
(in the case of secure data access key requests).

SDK scenario request to the user application is an XML-structure of the following format:

<SDK Scenario Step>
<SDK_Request Type="request type identifier">
<request parameter 0>

<request parameter N>

</SDK_Request>
</SDK_Scenario Step>

Returned in response to a request data should be placed in the XML-structure as follows:

100 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

<SDK Scenario Step>
<return data 0>

<return data N>
</SDK_Scenario Step>

5.9.4.2. Selection of the Authentication Procedure / Secure Data Access Variant

Request type identifier:
Request parameters:
<AC Type>

<CurrentACOptionIdx>

<RFID AccessControl Option>

Return data:
<ActiveOptionIdx>

"AC_Option_Selection”

abbreviation of the constant identifying the
type of procedure (from
eRFID_AccessControl_ProcedureType
enumeration, for example "acptPACE", "acpt-
TA" etc.)

the current index of the selected variant of pro-
cedure conducting

TRFID AccessControl_Option structure
(XML-representation, see section 6.3.70) for

each available variant of procedure conducting

the index of the selected variant of procedure
conducting

5.9.4.3. Request for the Secure Data Access Key

Request type identifier:
Request parameters:
<TerminalType>

<AuthReg>
<AuthReqg2>

<PACEPasswordType>

<PwdManagementAction>

<BlockedPassword>

«AccessKey»

numeric value of the current terminal type (from
eRFID_TerminalType enumeration)

current combination of the access rights flags to
the functionality of the electronic document
(see section 6.3.83)

numeric value of the current data access key
type (from eRFID_Password Type enumera-
tion)

numeric value of the current operation with the
data access key (from
eRFID PasswordManagementAction enu-
meration)

numeric value of the key type (from
eRFID_Password Type enumeration), blocked

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021

101

5. WORKING WITH SDK

Return data:
<PACEPasswordType>

<FullMRZMatching>

<MRZ>

<Password>

for the current operation — for each element in-
cluded in the set of blocked types

numeric value of the key type (from
eRFID_Password Type enumeration) selected
for use

logical sign of the need for additional compari-
son of the full contents of the given MRZ string
with the contents of DG1

document MRZ full text, in accordance with the
requirements set out in section 5.7.6

text string of the data access key other than
MRZ (CAN, PIN, PUK, SAI)

5.9.4.4. Request for the Action on the Secure Data Access Key

Request type identifier:
Request parameters:
<PACEPasswordType>

<PwdManagementStatus>

Return data:
<PwdPostAction>

" KeyManagement"

numeric value of the current key type (from
eRFID_Password_Type enumeration)

numeric value of the key status — one of the
values from eRFID_ErrorCodes enumeration:
RFID LAYER6 SECURITY MANAGER
RFID LAYER6 PWD SUSPENDED
RFID LAYER6 PWD SUSPENDED 2
RFID LAYER6 PWD BLOCKED
RFID LAYER6 PWD BLOCKED 2

RFID LAYER6 PWD DEACTIVATED
RFID LAYER6 PWD DEACTIVATED 2

numeric value of the selected action with the
key (from
eRFID PasswordPostDialogAction enu-
meration)

5.9.4.5. Request for the Certificate Chain for Passive Authentication Procedure

Request type identifier:
Request parameters:

"PA_Resources"

<Issuer> TRFID DistinguishedName structure (XML-
representation, see section 6.3.75), containing
an issuer identifier (see sections 4.8.1, 5.8.12)
<SerialNumber> serial number the required certificate — CDATA
node, containing Base64-encoded binary data
102 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

5. WORKING WITH SDK

<SubjectKeyIdentifier>

Return data:
<PA Certificate>
<Data>
<! [CDATAI[]]>
</Data>

</PA Certificate>

subject identifier of the required certificate —
CDATA node, containing Base64-encoded bina-
ry data

DER-encoded certificate data, for each certifi-
cate included in the chain — CDATA node, con-
taining Base64-encoded binary data.

5.9.4.6. Request for the Certificate Chain for Terminal Authentication Procedure

Request type identifier:
Request parameters:
<CAR>

Return data:
<TA Certificate>
<Data>
<! [CDATA[]]>
</Data>
<PrivateKey>
<! [CDATA[]]>
</PrivateKey>

</TA_Certificate>

"TA_Resources"”

required public CVCA-key identifier (see section
5.8.15)

certificate and the corresponding private key
data for each certificate included in the chain -
CDATA nodes, containing Base64-encoded bi-
nary data.

5.9.4.7. Request for the Digital Signature of the Challenge for Terminal Authentica-

tion Procedure

Request type identifier:
Request parameters:
<Challenge>

<HashValue>

Return data:
<TA Signature>
<Data>
<! [CDATAI[]]>
</Data>

"TA_ Signature’

the contents of the control data fragment (see
section 5.8.15) — CDATA node, containing
Baseb64-encoded binary data
the hash value of the control data fragment (see
section 5.8.15) — CDATA node, containing
Base64-encoded binary data

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021

103

5. WORKING WITH SDK

</TA Signature>

digital signature of the challenge data — CDATA
node, containing Base64-encoded binary data.

5.9.4.8. Request for the Status of the Terminal Sector Identifier for Restricted Identi-

fication Procedure

Request type identifier:
Request parameters:
<Sector ID>

Return data:
<Sector ID Status>

"RI_Status"

terminal sector identifier (see section 5.8.17) -
CDATA node, containing Base64-encoded bina-
ry data

numeric value of the status of the terminal sec-
tor identifier — ogHo from eRFID_ErrorCodes
enumeration:

RFID Error NoError
RFID Error Failed

104

Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

6.1. EXPORTED FUNCTIONS

All exported functions are declared with the specificator extern «C».

6.1.1._RFID Initialize()

Type: typedef DWORD (*_RFID Initialize) (DWORD)
Symbolic name: _RFID Initialize

Assignment: initialization of the main control library

Parameters: combination of eRFID _ControlRF values

During call of this function search, loading and initialization of functional libraries neces-
sary for work is performed as well as the formation of a list of RFID-chip readers available
in the system.

Return code — one of eRFID_ErrorCodes values:
e RFID_Error_NoError — operation completed successfully;
e RFID _Error_AlreadyDone - function was called already; the library is ready for
further work.

Any return value other than RFID Error_NoError or RFID Error_AlreadyDone
means that further work is impossible because of critical errors. In this case, it is necessary
to call _RFID_Free () deinitialization function, unload the DLL from the memory and fin-
ish the application, or by taking the necessary measures to restore the capability, to repeat
the call to the initialization function.

6.1.2. RFID Free()

Type: typedef DWORD (*_RFID Free) ()
Symbolic name: _RFID Free
Assignment: deinitialization of the main control library

Calling this function release of all resources of the main control library takes place. To re-
sume work it is necessary to call the _RFID_Initialize () again.

Return code — one of eRFID_ErrorCodes values:
e RFID_Error_NoError — operation completed successfully;
e RFID_Error_AlreadyDone - function was already called.

ATTENTION! RFID Free() and RFID Initialize () must be called from the same
thread of the user application.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 105

6. SDK SOFTWARE TOOLS

6.1.3. RFID SetCallbackFunc()

Type: typedef void

(*_RFID_SetCallbackFunc) (RFID NotifyFunc func)
Symbolic name: _RFID SetCallbackFunc
Assignment: setting of callback-function for receiving messages on the status of

command execution, on changes of the internal status of the library
or the device.

This function as the parameter accepts a pointer to the function of the user application,
which will be called during the process of command execution, when special situations
arise or there are changes in the device state.

6.1.4. RFID ExecuteCommand()

Type: typedef DWORD (*_RFID_ExecuteCommand)
(int command, void *params, void *result)
Symbolic name: _RFID_ExecuteCommand
Assignment: request to command execution
Parameters:
command — command code (one of eRFID_Commands constants)
params — input parameters of command
result — output parameters of command (results container)

Return code — one of eRFID _ErrorCodes values:

e RFID_Error_NoError — operation completed successfully;

e RFID Error NotInitialized — control library is not initialized (there
was no _RFID Initialize() call)

e RFID Error_InvalidParameter — incorrect input parameter of function
is passed;

e RFID_Error_PCSC_CardIsBusy — execution of previous command is

not completed;
RFID_Error_PCSC_ReaderNotAvailable — no active RFID-chip reader;

e RFID Error_NoChipDetected — RFID-chip is absent in the scope of
the reader;
e RFID Error_UnknownCommand — unknown command etc.

Sending of all the commands, defining and reading of device performance parameters is
done using _RFID_ExecuteCommand () function passing the command code, by transfer
of command parameters and - for reading commands — a pointer to a container for receiv-
ing the results.

The types of input parameters and result container are defined on assumption of the con-
text of each specific command.

106 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

6.1.5. RFID CheckResult()

Type: typedef HANDLE (*_RFID_CheckResult) (DWORD type,
DWORD output, void *param)

Symbolic name: _RFID CheckResult

Assignment: acquisition of the container with results of data reading from the
RFID-chip memory by the type of their representation; data conver-
sion into XML format

Parameters:
type — type of the requested result (one of the types of data representation
eRFID ResultType)
output — additional results representation (eOutputFormat)
param — parameters for additional result representation

Return value:
e if > 0, it is a descriptor of the structure containing data of the requested type
(TResultContainer *, casted to the type HANDLE);
e if <0-oneof eRFID ResultStatus values.

This function must be called after the command of RFID-chip data reading.

The user application must free memory occupied by these data after receiving the result
through _RFID_CheckResult (), by caling _RFID_FreeResult().

There are two ways of application of this function:
1) the conversion of result data containers into XML format;
2) the reception of a descriptor of result data containers for further access to its sepa-
rate fields with the help of _RFID CheckResultFromList() function (for
RFDP_FullyParsed result representing type).

To form the XML-representation it is necessary to pass one of ofClipboard_XML, of-
File_XML or ofXML values as type parameter, A pointer to a text buffer containing the
resulting XML-document will be placed in XML_buffer field of the return TResultCon-
tainer structure, and its length — in XMIL,_length field.

When type=ofClipboard_xML, text of the resulting XML-document will be placed in
Windows clipboard in CF_TEXT format (see the documentation on programming in Win-
dows environment) and will be available after return from _RFID CheckResult(). The
clipboard will be associated with a window, a handle of which (HWND) has been passed to

param.

When type=ofFile_XML, text of the resulting XML-document will be saved in a text file.
A pointer to a text string (char *) containing the full file name in UTF8 format must be
passed to param.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 107

6. SDK SOFTWARE TOOLS

6.1.6. RFID CheckResultFromList()

Type: typedef int (*_RFID CheckResultFromList)
(HANDLE container, DWORD output, void *param)
Symbolic name: _RFID CheckResultFromList
Assignment: access to separate fields of read data result structure (for
RFDP_FullyParsed type of result representation)

Parameters:

container - descriptor of the result received by RFID_CheckResult ()

output — additional result representation (eOutputFormat)

param — parameters for additional result representation

Return result:
e if >= 0, it is a digital code of the field to be transferred (one of eVisualFieldType,
eRFID VisualFieldType or eGraphicFieldType values);
e if < 0 — one of eRFID ResultStatus values:

1) RFID ResultStatus _EndOfList — the end of the fields list in the result
structure is reached (field value,
transferred with the previous func-
tion call, was the last in the list);

2) RFID_ResultStatus_InvalidParameter - incorrect
function parameter;
3) RFID ResultStatus_Error — error of formation of additional result

representation (when saving the file
or when placing to the clipboard).

When assigning the output=offInfo for the field of any type no additional actions with
data will be performed.

When working with text fields (RFID_ResultType_RFID_TextData) the following ac-
tions are performed:

e output = offClipboard

In this case, the contents of the current text field are stored in Windows clipboard in
CF_TEXT format and will be available after return from the function (see the documenta-
tion on programming in Windows environment).

When working with graphic fields (RFID_ResultType_RFID_ImageData) the logics of
the performed actions will be as follows:

e conditional test
output = offClipboard

In this case, the contents of the current graphic field are entered in Windows clipboard in
CF_DIB format and will be available after return from the function (see the documentation
on programming in Windows environment). Later return from the function occurs.

108 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

e conditional test

(output & offFile) = true

or
output = offFileBuffer

For the image from the current field a graphic file contents image of the assigned type is
formed. The type of graphic format is defined by the file name extension.

With (output & offFile)=true a full name of the required graphic format is passed
through param parameter, which should contain a pointer to a text string with the name
(char *)in UTF8 format. In this case, the data will be written in the file specified.

With output=offFileBuffer, param parameter should contain a pointer
TResultContainer *, serving as a container of the result being formed. The file name
of the required graphic format (or just the appropriate extension) should be in the field
XML_buf fer of this object.

e conditional test
(output & offXML) = true

XML-representation of graphic file image is formed.

e conditional test
(output & offClipboard) = true

The result (XML-representation of graphic file image) is stored in Windows clipboard in
CF_TEXT format. Later return from the function occurs.

e conditional test
output = offFileBuffer

A pointer to the data array of the formed file image is stored in buffer field, its length —
in buf_length field. Later return from the function occurs.

After reaching this point the saving of generated data in a graphic file under the specified
name and return from the function is taking place.

The logic of performed actions when working with the original images of graphic fields
(RFID_ResultType RFID OriginalGraphics) is as follows:

e conditional test
output = offFile

Type of the original graphic format is defined by the contents of GraphicsType of
TOriginalRFIDGraphics object of the current field (one of
eRFID OriginalGraphicsType values).

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 109

6. SDK SOFTWARE TOOLS

The contents of the field are written to a file, a full name of which has been passed through
param parameter, containing a pointer to a text string with the name (char *) in UTF8
format. This file’s extension is replaced by the default one, corresponding to a particular
original format. Later return from the function occurs.

e conditional test
output = offFileBuffer

In this case, param parameter must contain a pointer TResultContainer *, acting as a
result container.

A pointer to the data array of original file image is stored in buffer field, its length — in
buf_length field. Later return from the function occurs.

Note. A complete list of supported graphic file formats can be obtained by using
RFID_Command Get AvailableGraphicFormats command.

In case of work with gf_Portrait graphic field there is a possibility of its automatic
modification during the process of execution of RFID_CheckResultFromList () — cast
to the specified image height. To specify the desirable height in pixels there is
RFID_Command_Set CheckResultHeight command.

6.1.7._RFID_LibraryVersion()

Type: typedef DWORD (*_RFID LibraryVersion) ()
Symbolic name: RFID_LibraryVersion
Assignment: returns the version of the main SDK control library:

HIWORD () — major version,
LOWORD () — minor version (for the version 3.2 — 3 and 2 respectively)

6.1.8._RFID_UI_Helper_Initialize()

Type: typedef DWORD (*_RFID UI _Helper_Initialize) (DWORD)
Symbolic name: _RFID UI Helper Initialize

Parameters: reserved

Assignment: initializing the helper library for scenarios management

When calling this function initialization of resources required for the helper library occurs.

Return code — one of eRFID ErrorCodes values:

e RFID Error_NoError — operation completed successfully;
e RFID Error_AlreadyDone - function was called already, library is ready for fur-
ther work.

110 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

6.1.9. _RFID_Ul_Helper_Free()

Type: typedef DWORD (*_RFID UI_Helper Free) ()
Symbolic name: _RFID UI_Helper Free
Assignment: deinitializing the helper library for scenarios management

When calling this function deinitialization of used by the helper library resources occurs. To
restart it is necessary to make _RFID_UI_Helper_Initialize () call again.

Return code — one of eRFID_ErrorCodes values:
e RFID_Error_NoError — operation completed successfully;
e RFID_Error_AlreadyDone - function was called already.

6.1.10. _RFID_Ul_Helper_ManageSetup()

Type: typedef DWORD (*_RFID UI_Helper ManageSetup)
(VARIANT *setup_xml var, HANDLE hWnd)
Symbolic name: _RFID UI_Helper ManageSetup
Assignment: scenario XML-structure formation and management of its parameters
Parameters:
setup xml var — the text content of the scenario XML-structure
hWnd — logical sign of the need to display a window that allows visually

specify the contents of the script in a dialogue with the user

In case setup xml var value is empty (bstrval field of VARIANT structure contains
0), scenario XML-structure will be formed containing the default parameters.

Further, if given a non-zero hwnd parameter, a dialog box will be displayed to control sce-
nario parameters visually.

Thus formed scenario XML-structure will be placed in setup xml var container to re-
turn to the calling application.

in case of displaying dialog box, the value of the return code will depend on the order of
closing the window. When it closed by clicking "Ok" button the return code will be
RFID Error NoError, "Cancel" button - RFID Error Failed.

In operation without dialog window with correct input parameters the return code will al-
ways be equal to RFID Error NoError.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 111

6. SDK SOFTWARE TOOLS

6.2. CALLBACK-FUNCTION

This is the function of the user application, which is called by the main control library for
the notification on the status of execution of commands or on changes of library or device
internal statuses. Its use is set by using _RFID_SetCallbackFunc () function (see sec-
tion 5.1).

The type of callback-function is declared in RFID.h:

typedef void (__stdcall *RFID NotifyFunc) (int code, void *value);
Accordingly, in the user application it must be declared like:

void _ _stdcall MyNotifyFunc(int code, void *value);
and set as follows:

RFID_SetCallbackFunc (MyNotifyFunc);

Parameters:
code — notification code (eRFID NotificationCodes)
value — value (in the context of the code)

112 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

6.3. STRUCTURES

6.3.1. TResultContainerList

TResultContainerList structure is used to store and transfer to the user application
complete list of various types of representation of the read data when executing
RFID Command ReadProtocol3 and RFID Command_ReadProtocol4 commands (see
section 5.6.2).

struct TResultContainerList

{
DWORD Count;

TResultContainer *List;

}s

Declaration: PasspR.h

Fields:

Count — number of List array elements

List — array of containers for data of different type of representation.

6.3.2. TResultContainer

TResultContainer structure is used to store results of read data from the RFID-
chip for one type of data representation and is a generating structure for
TResultContainerList.

struct TResultContainer

{
DWORD result type;

DWORD light;
DWORD buf length;
void *pbuffer;
DWORD XML length;
BYTE *XML_buffer;
DWORD list idx;
DWORD page 1idx;
}i

Declaration: PasspR.h

Fields:

result type — identifier defining the type of pointer stored in buffer. A value —
one of eRFID_ResultType identifiers

light — not used

buf length — size of the data structure referenced to by buffer

buffer — pointer to a structure with the results of data reading (a specific type
of data is determined by result_type field value)

XML length — size of XML_buf fer array, in bytes

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 113

6. SDK SOFTWARE TOOLS

— text array containing representation of structure with results of

data reading in XML format

XML buffer
list idx — for internal use
page idx — for internal use

Value of result_type

Pointer type buffer

RFID_ResultType RFID _RawData

TDocBinaryInfo *

RFID_ResultType RFID TextData

TDocVisualExtendedInfo *

RFID_ResultType RFID _ImageData

TDocGraphicsInfo *

RFID_ResultType_RFID_BinaryData

TDocBinaryInfo *

RFID ResultType RFID_OriginalGraphics

TOriginalRFIDGraphics *

XML_length and XML_buffer

fields

are initialized

ofXML requested result types (see section 5.6.3).

6.3.3. TDocBinaryinfo

TDocBinaryInfo structure is used to store the data reading results from the RFID-chip in
separated data
RFID ResultType RFID RawData and RFID ResultType RFID BinaryData re-

a form of a list of the logically

sult representing types.

struct TDocBinaryInfo

{
DWORD nFields;

TBRinaryData *pArrayFields;
i

Declaration:
Fields:

nFields
pArrayFields

PasspR.h

6.3.4. TBinaryData

groups. It is

— number of pArrayFields array elements
— array of structures for different logically separated data groups

TBinaryData structure is a basic structure for TDocBinaryInfo list.

struct TBinaryData

{
int FieldType;

char FieldName[256];
int Buf Length;
BYTE *Buffer;

114

Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

only when
_RFID_CheckResult () function passing one of ofClipboard XML, ofFile_XML or

used for

6. SDK SOFTWARE TOOLS

Declaration: PasspR.h

Fields:

FieldType — type of data group that is stored in this container (one of
eRFID DataFile_Type identifiers)

FieldName — data group symbolic name

Buf_Length — size of the data structure referenced to by Buffer

Buffer — pointer to the data group structure

Depending on the context Buf fer may contain a pointer to different structures:

e a simple byte array (of Buf_Length length), containing the exact copy of a specified
data group, stored in the memory of RFID-chip without additional formatting with all
the service information (separation tags, etc) for
RFID _ResultType RFID_RawData type;

e a structure with the description of data group, the type of which is defined by
FieldType value for RFID ResultType RFID_BinaryData type.

6.3.5. TDocVisualExtendedInfo

TDocVisualExtendedInfo structure is used to store the results of data reading from
the RFID-chip in a form of a list of logically separated text data (text fields). It is used for
RFID ResultType RFID TextData type of data representation.

struct TDocVisualExtendedInfo
{

int nFields;
TDocVisualExtendedField *pArrayFields;
by

Declaration: PasspR.h

Fields:

nFields — number of pArrayFields array elements

pArrayFields — array of the structures containing logically separated text data

6.3.6. TDocVisualExtendedField

TDocVisualExtendedField structure is the basic container structure for ThocVisu-
alExtendedInfo the and stores information about a single text data field (see sec-
tions 5.7.2, 5.10, 6.1.6).

struct TDocVisualExtendedField
{

long FieldType;

long RFID OriginDG;

long RFID OriginDGTag;
long RFID OriginTagEntry;
long RFID OriginEntryView;

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 115

6. SDK SOFTWARE TOOLS

char FieldName [256];

int StringsCount;

TStringResultSDK *StringsResult;

int Buf Length;

char *Buf Text;

char *FieldMask;

int Validity;

int InComparison;

DWORD Reserved?;

DWORD Reserved3;
}i
Declaration: PasspR.h
Fields:
wFieldType — logical type of text field (one of eVisualFieldType or

eRFID VisualFieldType values)

wLCID — not used
RFID_OriginDG source file of the text field (eRFID DataFile_Type)
RFID_OriginDGTag — not used (always contains 0)
RFID_OriginTagEntry — not used (always contains 0)
RFID_OriginEntryView — not used (always contains 0)
FieldName — symbolic name of the text field
StringsCount — not used
StringsResult — not used
Buf_Length — length of the text string in Buf_Text
Buf_Text — string with text data of the field in UTF8 format
FieldMask — string of format mask of text data of the field
Validity — not used
InComparison — not used
Reserved?2 — not used
Reserved3 — not used

XML-representation of the structure:

<RFID Text Field>
<FieldType Text=""> — numeric FieldType value

<O0riginDG Text=""> - numeric RFID OriginDG value
<OriginDGTag> - numeric RFID OriginDGTag value
<OriginTagEntry> — numeric RFID OriginTagEntry value
<OriginEntryView> - numeric RFID OriginEntryView value
<Buf Text> - string Buf Text value

<FieldMask> - string FieldMask value

</RFID Text Field>

Text attributes of FieldType and OriginDG nodes contain text abbreviations of the
corresponding values.

116 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

6.3.7. TDocGraphicsinfo

TDocGraphicsInfo structure is used to store the results of data reading from the RFID-
chip in a form of a list of logically separated graphic data (images, graphic fields). It is used
for RFID_ResultType RFID ImageData results representation type.

struct TDocGraphicsInfo
{
int nFields;
TDocGraphicField *pArrayFields;
b

Declaration: PasspR.h

Fields:

nFields — number of pArrayFields array elements
pArrayFields — array of images

6.3.8. TDocGraphicField

TDocGraphicField structure is a basic container structure for TDocGraphicsInfo list
and contains information about a single graphic field.

struct TDocGraphicField
{

int FieldType;

long RFID OriginDG;

long RFID OriginDGTag;
long RFID OriginTagEntry;
long RFID OriginEntryView;
char FieldName[256];

TRawImageContainer image;

}s

Declaration: PasspR.h

Field:

FieldType — logical type of graphic field (one of eGraphicFieldType
values)

RFID_OriginDG — source file of the image (eRFID_DataFile_Type)

RFID_OriginDGTag — index of source record of the image with biometric infor-

mation in the informational data group

index of the template in the record with biometric data
index of the variant of the biometric data template
FieldName — symbolic name of the graphic field

image — image data

RFID OriginTagEntry

RFID OriginEntryView

XML-representation of the structure:

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 117

6. SDK SOFTWARE TOOLS

<RFID Graphic Field>
<FieldType Text=""> — numeric FieldType value

<OriginDG Text=""> - numeric RFID OriginDG value
<OriginDGTag> - numeric RFID OriginDGTag value
<OriginTagEntry> — numeric RFID OriginTagEntry value
<OriginEntryView> - numeric RFID OriginEntryView value
<File Image>

<Length> - size of the graphic image file

<Format> - file extension of the graphic format (".bomp"), used for

the image encoding
<Data>
<! [CDATA[]]> - Baseb4-encoded byte array of the graphic image file
</Data>

</File Image>
</RFID Graphic Field>

Text attibutes of FieldType and OriginDG nodes contain text abbreviations of the cor-
responding values.

6.3.9. TRawlmageContainer

TRawImageContainer structure is used to store and transfer of graphic images in un-
compressed Windows DIB format to the user application.

struct TRawImageContainer

{
BITMAPINFO *bmi;

BYTE *bits;
i
Declaration: PasspR.h
Fields:
bmi — Windows DIB header with 256-color palette (if the format of im-
age provides palette)
bits — image array of pixels (DWORD aligned)

The amount of memory allocated for bmi, equals to
sizeof (BITMAPINFOHEADER) + sizeof (RGBQUAD) *256.

The amount of memory allocated for bits, equals to bmi .bmiHeader.biSizeImage.

6.3.10. TOriginalRFIDGraphicsinfo

TOriginalRFIDGraphicsInfo structure is used to store the results of data reading in a
form of a list of objects of the original binary representation of the graphics in memory of

118 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

the RFID-chip. It is used for RFID_ResultType RFID OriginalGraphics type of re-
sults representation.

struct TOriginalRFIDGraphicsInfo

{
DWORD nFields;
TOriginalRFIDGraphics *pArrayFields;
bi

Declaration: RFID.h

Fields:

nFields — number of pArrayFields array elements
pArrayFields — array of images

6.3.11. TOriginalRFIDGraphics

TOriginalRFIDGraphics structure is a basic container structure for TOrigi-
nalRFIDGraphicsInfo list and contains information about a single object of the origi-
nal binary representation of the graphics in memory of the RFID-chip.

struct TOriginalRFIDGraphics
{
int FieldType;
int GraphicsType;
int RFID OriginDG;
int RFID OriginDGTag;
int RFID OriginTagEntry;
int RFID OriginEntryView;
int Buf Length;
BYTE *Buffer;
by

Declaration: RFID.h

Fields:

FieldType — logical type of graphic field (one of eGraphicFieldType
values)

GraphicsType — image encoding type (eRFID_OriginalGraphicsType);

RFID_OriginDG — source file of the image (eRFID_DataFile_Type)

RFID_OriginDGTag — index of source file of the image with biometric information

in the informational data group

index of the template in the biometric data record
index of the variant of the biometric data sample
Buf_Length — length of Buffer array

Buffer object data binary array

RFID_OriginTagEntry

RFID_OriginEntryView

XML-representation of the structure:

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 119

6. SDK SOFTWARE TOOLS

<RFID OriginalGraphic Field>
<FieldType Text=""> — numeric FieldType value
<GraphicsType Text=""> — numeric GraphicsType value

<OriginDG Text=""> - numeric RFID OriginDG value
<OriginDGTag> - numeric RFID OriginDGTag value
<OriginTagEntry> — numeric RFID OriginTagEntry value
<OriginEntryView> - numeric RFID OriginEntryView value
<File Image>

<Length> - numeric Buf Length value

<Data>

<![CDATA[]]> - Baseb4-encoded Buffer contents
</Data>

</File Image>
</RFID OriginalGraphic Field>

Text attibutes of FieldType, OriginDG and GraphicsType nodes contain text ab-
breviations of the corresponding values.

6.3.12. TRFID_CardPropertiesExt

TRFID CardPropertiesExt structure is used to store extended information about the
characteristics of the RFID-chip located in the scope of the reader (see sections 5.7.1, 5.8.3).

struct TRFID CardPropertiesExt

{
TRFCardProp Properties;

DWORD CbAtr;
BYTE PAtr[36];
}i
Declaration: RFID.h
Fields:
Properties — information about characteristics of the RFID-chip
cbAtr — length of pAtr array
pAtr — ATR string of the RFID-chip

XML-representation of the structure (see also section 6.3.13):

<CardProperties>
<RFID Type> — text abbreviation of RFID Type value
<Baudratel> - numeric Baudratel value in hexadecimal format (e.g.
"0x0000000F™)
<Baudrate2> — numeric Baudrate?2 value in hexadecimal format
<Support 4> - boolean Support 4 value
<ChipType A> — text abbreviation of ChipType A value
<Support Mifare> - boolean Support Mifare value

120 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

<MifareMemory>
<UID>

<ATQ A> -

<SAK>

<ATQ B> -

<BitRateS> -

<BitRateR> -

<ATR>

</CardProperties>

6.3.13. TRFIDCardProp

numeric MifareMemory value

UID contents in text format. Each byte is represented by
its hexadecimal value. The individual bytes are separated
by spaces (e.g. "F9 4F 41 60")

numeric ATQ A value in hexadecimal format (e.g.
"0x0000M™)

numeric SAK value in hexadecimal format (e.g.
"0x00™)

ATQ B contents in text format. Each byte is represented
by its hexadecimal value. The individual bytes are sepa-

rated by spaces (e.g. "50 F9 4F 41 60 00 00 00
00 77 81 81")

numeric BitRateS value in hexadecimal format (e.g.
"OXO4")

numeric BitRateR value in hexadecimal format (e.g.
"OXO4")

pAtr contents in text format. Each byte is represented by
its hexadecimal value. The individual bytes are separated

by spaces (e.g. "3B 88 81 11 FC 00 00 00 00
77 81 81 00 93M)

TRFCardProp structure is used to store information about characteristic of the RFID-chip
located in the scope of the reader (see sections 5.7.1, 5.8.3).

struct TRFCardProp

{
DWORD
WORD
WORD
BOOL
DWORD
BOOL
DWORD
BYTE
BYTE
WORD
BYTE
BYTE
BYTE
BYTE

}s

Declaration:

RFID Type;
Baudratel;
Baudrate?2;
Support 4;
ChipType A;
Support Mifare;
MifareMemory;
SizeUID;
UID[107];

ATQ A;

SAK;

ATQ B[13];
BitRateS;
BitRateR;

RFID.h

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021

121

6. SDK SOFTWARE TOOLS

Fields:

RFID_Type type of the RFID-chip by the physical parameters of the con-
nection between chip and reader antennas (one of
eRFID _Type constants)

Baudratel combination of eRFID_BaudRate flags, defining the data
transmitting rates supported by the RFID-chip

Baudrate?2 combination of eRFID BaudRate flags, defining the data
receiving rates supported by the RFID-chip

Support_4 sign of support for ISO/IEC 14443-4 data exchange protocol
—true or false

ChipType_A type of the chip from the MIFARE® family, supporting ISO/IEC

Support_Mifare

14443-3 protocol (MIFARE® Classic Protocol) (for chips of the
«A» type) — one of eRFID_A Chip constants
sign of support for ISO/IEC 14443-3 data exchange protocol
(MIFARE® Classic Protocol) — true or false

MifareMemory amount of operational memory MIFARE® of the chip, kilo-
bytes

SizeUID length of UID field

UID unique chip identifier

ATQ_A reply of the «a» type chip to «<REQA» command of ISO/IEC
14443-3 protocol (Answer To Request, Type A — ATQA) — for
the internal use by the main control library

SAK reply of the «A» type chip to «SELECT» command of ISO/IEC
14443-3 protocol (Select Acknowledge, SAK) — for the internal
use by the main control library

ATQ B reply of the «B» type chip to the identification request (An-
swer To Request, Type B — ATQB) — for the internal use by the
main control library

BitRateS eRFID BaudRate value, indicating the established rate for
data transmitting to the RFID-chip

BitRateR eRFID_BaudRate value, indicating the established rate for

6.3.14. TRF_EFCOM

data receiving from the RFID-chip

TRF_EFCOM structure is used to store information about presence of informational data
groups in the memory of RFID-chip supporting ISO/IEC 14443-4 protocol (see sections

5.7.4, 5.8.10).

struct TRF_EFCOM

{
BYTE bLDSVersion[4];
BYTE bUCVersion[6];
BYTE bSizeDataGroup;
BYTE bDataGroup[20];

122 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

WORD wSizeGroup[20];
WORD time[20];
}s

Declaration: RFID.h

Fields:

bLDSVersion — version of logical data structure in aabb format, where aa —
major version number, bb — minor version number

bUCVersion — Unicode version in aabbcc format, where aa — major version
number, bb — minor version number, cc — release version
number

bSizeDataGroup — number of significant elements in bDataGroup, wAddr-
Group and wSizeGroup

bDataGroup — list of identifiers of the informational data groups that are

present in the memory of the chip (a set of
eRFID DataGroupTypeTag Vvalues in the range from
RFDGT _DG1 to REDGT_SOD)

wSizeGroup — lengths of corresponding informational data groups from
bDataGroup list
time — time of reading of corresponding information data groups

from bDataGroup list, ms

XML-representation of the structure:
<RFID EF COM>

<LDSVersion> - string contents of bLDSVersion
<UnicodeVersion> - string contents of bUCVersion
<DataGroup Time="" Size="" Tag="">

— for each informational data group registered in EF.COM.
Time — reading time in ms, Size — size in bytes, Tag -
corresponding bDataGroup element.
</RFID EF COM>

6.3.15. TRF_FT_STRING

TRF_FT_STRING structure is used to store information about the text field that is a part of
one of the informational data groups.

struct TRF_FT_ STRING
{

int nType;

DWORD nStatus;
BYTE sFormat[32];
unsigned nDatalength;
BYTE * pbata;

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 123

6. SDK SOFTWARE TOOLS

Declaration: RFID.h

Fields:

nType — logical type of the field (one of eVisualFieldType or
eRFID VisualFieldType values)

nStatus — result of logical analysis of compliance of the contents of the

field with the requirements of the specification (errLDS_0k
or one of eLDS_ParsingNotificationCodes values) (see

section 5.2)

sFormat — mask of format of text information (for example, «YYMMDD»
for date of birth)

nDataLength — length of pData text array

pData — text array of the field contents

In XML-structures appears as a separate node, named based on the context of use. As the
value the contents of pData in a string format appears. It is also possible the context pres-
ence of Status, Type and Format attributes of the node. As their contents are the values
of the fields nStatus, nType and sFormat respectively.

6.3.16. TRF_FT_BYTE

TRF_FT_BYTE structure is used to store information about the numeric BYTE field (1 byte)
that is a part of one of the informational data groups.

struct TRF_FT BYTE

{
int nType;
DWORD nStatus;
BYTE bData;

}i

Declaration: RFID.h

Fields:

nType — logical type of the field (one of eVisualFieldType or
eRFID VisualFieldType values)

nStatus — result of logical analysis of compliance of the contents of the

field with the requirements of the specification (errLDS_0Ok
or one of eLDS_ParsingNotificationCodes values) (see
section 5.2)

bData — numeric value

In XML-structures appears as a separate node, named based on the context of use. As the
value the contents of pData in a numeric format appears. It is also possible the context
presence of Status and Type attributes of the node. As their contents are the values of
the fields nsStatus and nType respectively.

124 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

6.3.17. TRF_FT_WORD

TRF_F'T_WORD structure is used to store information about the numeric WORD field (2 bytes)
that is a part of one of the informational data groups.

struct TRF_FT WORD

{
int nType;
DWORD nStatus;
WORD wData;

}i

Declaration: RFID.h

Fields:

nType — logical type of the field (one of eVisualFieldType or
eRFID VisualFieldType values)

nStatus — result of logical analysis of compliance of the contents of the

field with the requirements of the specification (errLDS_0Ok
or one of eLDS_ParsingNotificationCodes values) (see
section 5.2)

wData — numeric value

In XML-structures appears as a separate node, named based on the context of use. As the
value the contents of pData in a numeric format appears. It is also possible the context
presence of Status and Type attributes of the node. As their contents are the values of
the fields nStatus and nType respectively.

6.3.18. TRF_FT_NUMBER

TRF_FT NUMBER structure is used to store information about the numeric DWORD field
(4 bytes) that is a part of one of the informational data groups.

struct TRF_FT NUMBER
{

int nType;
DWORD nStatus;
int nData;
bi
Declaration: RFID.h
Fields:
nType — logical type of the field (one of eVisualFieldType or
eRFID VisualFieldType values)
nStatus — result of logical analysis of compliance of the contents of the

field with the requirements of the specification (errLDS_Ok

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 125

6. SDK SOFTWARE TOOLS

or one of eLDS_ParsingNotificationCodes values) (see
section 5.2)
nData — numeric value

In XML-structures appears as a separate node, named based on the context of use. As the
value the contents of pData in a numeric format appears. It is also possible the context
presence of Status and Type attributes of the node. As their contents are the values of
the fields nStatus and nType respectively.

6.3.19. TRF_FT_BYTES

TRF_FT_BYTES structure is used to store an array of binary informationthat is a part of one
of the informational data groups.

struct TRF_FT_ BYTES

{
int nType;
DWORD nStatus;
DWORD nDatalength;
BYTE *pData;

i

Declaration: RFID.h

Field:

nType — logical type of the field (one of VisualFieldType,
eRFID VisualFieldType Or eGraphicFieldType values)

nStatus — result of logical analysis of compliance of the contents of the

field with the requirements of the specification (errLDS_0Ok
or one of eLDS_ParsingNotificationCodes values) (see

section 5.2)
nDatalength — length of pData array
pData binary data array

In XML-structures appears as a separate node, named based on the context of use. As the
value the Base64-encoded contents of pData in CDATA-item format appears. It is also
possible the context presence of Status, Type and Length attributes of the node. As
their contents are the values of the fields nStatus, nType and nDataLength respective-

ly.

6.3.20. TRF_EF_DG1

TRF_EF DG1 structure used to store the contents of EF.DG1 informational data group of
ePassport application — document MRZ data.

126 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

struct TRF_EF_DG1
{
BYTE nType;
BYTE nDocumentID;
TRF FT STRING ftsDocumentType;
TRF FT STRING ftsState;
TRF FT STRING ftsHolder;
TRF FT STRING ftsDocumentNumber;
BYTE nCheckDigitDocumentNumber;
TRF FT STRING ftsNationality;
TREF _FT STRING ftsBirthday;
BYTE nCheckDigitBirthday;
TRF FT STRING ftsSex;
TREF _FT STRING ftsExpiryDate;

BYTE nCheckDigitExpiryDate;
TRF FT STRING ftsOptionalData;
BYTE nCheckDigitOptionalData;
BYTE nCheckDigitComposite;
by
Declaration: RFID.h
Field:
nType — type of informational data group; always contains

RFDGT_DG1 value from eRFID DataGroupTypeTag
enumeration

nDocumentID — type of document, one of CDocFormat values (clas-
sification of document formats — by the ISO/IEC 7810)

ftsDocumentType — symbolic code of document type

ftsState — symbolic code of document issuing state

ftsHolder — DO’s name and surname of the

ftsDocumentNumber — document number

nCheckDigitDocumentNumber — check digit of document number

ftsNationality — symbolic code of DO'’s nationality

ftsBirthday — DO's date of birth

nCheckDigitBirthday — check digit of DO’s date of birth

ftsSex — DO's sex

ftsExpiryDate — term of validity of the document

nCheckDigitExpiryDate — check digit of term of validity of the document

ftsOptionalData — DO's personal number or other additional data

nCheckDigitOptionalData check digit of additional data
nCheckDigitComposite — general check digit

XML-representation of the structure:

<RFID DG1>
<Type>
<DocumentID>
<DocumentType>

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 127

6. SDK SOFTWARE TOOLS

<State>
<Holder>
<DocumentNumber>
<CheckDigitDocumentNumber>
<Nationality>
<Birthday>
<CheckDigitBirthday>
<Sex>
<ExpiryDate>
<CheckDigitExpiryDate>
<OptionalData>
<CheckDigitOptionalData>
<CheckDigitComposite>
</RFID DG1>

Values and format of nodes correspond to the fields of TRF_EF_DG1 structure.

6.3.21. TRF_EF_DG234

TRF_EF DG234 structure is used to store the contents of EF.DG2, EF.DG3, EF.DG4 infor-
mational data groups of ePassport application and EF.DG6, EF.DG7, EF.DG8 informa-
tional data groups of eDL application — document owner's biometric data.

struct TRF_EF DG234

{
BYTE nType;
BYTE nRecords;
TRF EF BIT** pBITs;

i

Declaration: RFID.h

Fields:

nType — type of informational data group; contains REDGT_DG2,
RFDGT_DG3, RFDGT_DGA4, RFDGT_EDI,_DG®6,

RFDGT_EDL_DG7 or RFDGT_EDL_DGS8 values respectively
(from eRFID_DataGroupTypeTag enumeration)
nRecords — number of pBITs array elements
PBITs — array of pointers to the container structures of records, in-
cluded in the informational data group and containing
templates of biometric information (Biometric Information
Template, BIT)

XML-representation of the structure:

<RFID DG2>

<Type> — numeric nType value
<BiometricTemplates>

128 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

<BIT>

— XML-representation of TRF_EF BIT structure, for each
element of pBITs

</BiometricTemplates>

</RFID DG2>

Name of the root node corresponds to the informational data group.

6.3.22. TRF_EF_BIT

TRF_EF _BIT structure is a container for storing the contents of a single record (Biometric
Information Template, BIT) of the biometric informational data group. It includes the con-
tents of the corresponding Biometric Header Template (BHT) and directly the object of the

biometric data themselves.

Biometric information is represented in a format that meets the requirements of [17]
(ISO/IEC 19785.2), and corresponds to the structure of objects with biometric information,
which is given in the Table D.2 of this document.

struct TRF_EF BIT

{

TRF_FT NUMBER
TRF_FT NUMBER
TRF_FT NUMBER
TRF_FT NUMBER
TRF_FT NUMBER
TRF_FT STRING
TRF_FT STRING
TRE_FT NUMBER
TRF_FT NUMBER
TRF_FT NUMBER
TRF_FT_ NUMBER
TRF_FT BYTES
TRE_FT BYTES
TRE_FT BYTES
void *

ftnSecurity;
ftnIntegrity;
ftnVersion;
ftnType;
ftnSubType;
ftsCreateDate;
ftsvalidityPeriod;
ftnProductlID;
ftnFormatOwner;
ftnFormatType;
ftnBDBType;
ftbBDBFormatId;
ftbBDBVersion;
ftbRawBDBData;
PBDB;

}s

Declaration:
Fields:
ftnSecurity
ftnIntegrity
ftnVersion
ftnType

ftnSubType

ftsCreateDate
ftsvValidityPeriod

REFID.h

one of eBIT SecurityOptions values [17,§5.2.1.1]

one of eBIT IntegrityOptions values[17,§5.2.1.2]

header version (Patron Header Version) [17, § 5.2.1.4]

type of biometric data, one of eCBEFF_BiometricType values
[17, 8 5.2.1.5]

subtype of biometric data [17, §5.2.1.6] (combination eC-
BEFF_BiometricSubTypeMask values)

date of creation of this biometric record [17, § 5.2.1.10]
expiration date of this biometric record [17, § 5.2.1.11]

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021

129

6. SDK SOFTWARE TOOLS

ftnProductID — product identifier (Product ID) [17, § 5.2.1.18]

ftnFormatOwner — identifier of the owner of biometric data representation format
(one of eCBEFF_FormatOwners values) [17, 8 5.2.1.17.1]

ftnFormatType — identifier of biometric data record format (one of eC-
BEFF_FormatTypes values) [17, § 5.2.1.17.2]

ftnBDBType — tag of biometric data group, value 0x5F2E or 0x7F2E [17, Ta-
ble D.2]

ftbBDBFormatId — format identifier in a text form, contains symbol signature with a
terminating zero byte

ftbBDBVersion — text representation of the format version with a terminating ze-

ro byte. The first two characters represent the major version
number, the third one — the minor version number
ftbRawBDBData — complete binary image of the biometric record
pBDB — pointer to a structure containing the data of biometric record

Type of structure, referenced to by pBDB, is defined by the contents of ftnFormatType.

Field £tnFormatType value Pointer type in pBDB

ftypFace_Image TFacialBDB *
ftypFace_Image_FDIS

ftypFinger_Image TFingerBDB *
ftypFinger_Image_FDIS
ftypIris_Image_FDIS TIrisBDB *

ftypIris_ImageExtended
ftypIris_ImageExtended_FDIS

ftypFinger_Minutiae TFingerMinutiaeBDB *
ftypFinger_Minutiae_FDIS
ftypFinger_MinutiaeExtended

ftypFinger MinutiaeExtended FDIS

The contents of biometric data of other types will only be present in ftbRawBDBData bi-
nary non-formatted array.

Note. When TRF_EF BIT structures used for description of biometric data, the original
type of BDB format, which is directly specified in the read data, is stored in ftnFor-
matType field. However, this value due to some reason may not comply with the re-
quirements of the specification. In this case the working value of BDB format type
corrected by a number of other means is stored in £tbRawBDBData .nType field.

Belonging to a particular subtype of biometric data is determined by applying the appropriate
mask from eCBEFF BiometricSubTypeMask to the contents of ftnSubType field:

bool subtype = (ftnSubType.nData & <Mask>) == <Mask>;

XML-representation of the structure:

130 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

<BIT>
<Security>
<Integrity>
<Version>
<Type>
<SubType>
<CreateDate>
<ValidityPeriod>
<ProductID>
<FormatOwner>
<FormatType>
<BDBType>
<BDBFormatId>
<BDBVersion>
<node of corresponding BDB XML-representation>
</BIT>

Values and format of nodes correspond to the fields of TRF_EF_BIT structure.

6.3.23. TFacialBDB

TFacialBDB structure is used to store the contents of a single record with biometric
graphic facial data according to [15].

struct TFacialBDB

{
WORD FacesCount;
TFacialRecord * pFaces;

}s

Declaration: RFID.h

Fields:

FacesCount — number of pFaces array elements

pFaces — array of objects with biometric information included in the pre-
sent record

ftbBDBFormatId — field of the respective TRF_EF_BIT record object must contain

the value ‘'FAC’.

XML-representation of the structure:

<FacialBDB>
<FacialRecord> - XML-representation of TFacialRecord structure, for each
element of pFaces
</FacialBDB>

6.3.24. TFacialRecord

TFacialRecord structure is used to store information about a single object from a rec-
ord with biometric graphic facial data.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 131

6. SDK SOFTWARE TOOLS

struct TFacialRecord

{

TFacialInfo frFacialInfo;
TFacialImageInfo frImageInfo;

}i

Declaration: RFID.h

Field:

frFaciallInfo — general information about the object
frImageInfo — graphic and information about it

XML-representation of the structure:

<FacialRecord>
<FacialInfo> - XML-representation of TFacialInfo structure
<ImageInfo> - XML-representation of TFacialImageInfo structure
</FacialRecord>

6.3.25. TFaciallnfo

TFacialInfo structure is used to store general information about a single object from a
record with biometric graphic facial data.

struct TFaciallInfo

{

TRE_FT BYTE Gender;

TRFE_FT BYTE EyeColor;

TRF _FT BYTE HairColor;

TRF _FT NUMBER FeatureMask;

TRE_FT WORD Expression;
TPoseAngle PoseAngle;

TPoseAngle PoseAngleUncertainty;
WORD FeatPointsCount;

TFeaturePoint * pFeaturePointsList;

}i

Declaration: RFID.h

Fields:

Gender — DO's sex, one of eCBEFF_Gender values [15, § 5.5.3]

EyeColor — DO'’s eye color, one of eCBEFF_EyeColor values [15, § 5.5.4]

HairColor — DO’s hair color, one of eCBEFF HairColor values [15,
§ 5.5.5]

FeatureMask — byte combination of flags of presence of various face image
features (combination of eCBEFF_FaceFeatureMask values)
[15, § 5.5.6]

Expression — face expression on the image, one of eC-

BEFF FaceExpression values [15, § 5.5.7]

132 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

description of face pose [15, § 5.5.8]

description of face uncertainty pose [15, § 5.5.9]
number of pFeaturePointsList array elements
array of feature points [15, § 5.6]

PoseAngle

PoseAngleUncertainty

FeatPointsCount

pFeaturePointsList

The presence of a particular feature of the face image is determined by applying the ap-
propriate mask from eCBEFF_FaceFeatureMask to the contents of FeatureMask field:

bool feature = (FeatureMask & <Mask>) == <Mask>;

XML-representation of the structure:

<FacialInfo>
<Gender>
<EyeColor>
<HairColor>
<FeatureMask>
<Expression>
<PoseAngle>
<PoseAngleUncertainty>
<FeaturePoints>

<FeaturePoint>

</FeaturePoints>
</FacialInfo>

Values and format of nodes correspond to the fields of TFacialInfo structure.

6.3.26. TPoseAngle

TPoseAngle structure is used to store information about the face pose, contained in the
object description in the record with biometric graphic data, according to [15, §5.5.8].

struct TPoseAngle

{
TRF_FT BYTE Yaw;
TRF_FT BYTE Pitch;
TRF_FT BYTE Roll;

}s

Declaration: RFID.h
Fields:

Yaw — yaw angle;
Pitch — pitch angle;
Roll — roll angle.

XML-representation of the structure:

<PoseAngle>
<Yaw>
<Pitch>

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 133

6. SDK SOFTWARE TOOLS

<Roll>
</PoseAngle>

Values and format of nodes correspond to the fields of TPoseAngle structure.

6.3.27. TFeaturePoint

TFeaturePoint structure is used to store information about a single face feature point
contained in the object description in the record with biometic graphic data, according to
[15, §5.6].

struct TFeaturePoint

{
TRF FT BYTE FeatureType;
TRF _FT BYTE FeaturePoint;
TRE _FT WORD X;
TRF_FT WORD Y;
TRF _FT WORD reserved;

i

Declaration: RFID.h

Fields:

FeatureType — type of the feature (always contains the value 1)

FeaturePoint — code of the feature point (according to ISO/IEC 14496-2:2003)

X — X-coordinate of the point, relative to the upper left corner of
the image

Y — Y-coordinate of the point, relative to the upper left corner of the
image

reserved — reserved for further use

XML-representation of the structure:

<FeaturePoint>
<Type>
<Point>
<X>
<Y>
</FeaturePoint>

Values and format of nodes correspond to the fields of TFeaturePoint structure.

6.3.28. TFaciallmagelnfo

TFacialImageInfo structure is used to store a graphic image of the object from a rec-
ord with biometric graphic facial data according to [15, §5.7].

struct TFacialImagelInfo

{
TRF FT BYTE FaceImageType;

134 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

TRF FT BYTE ImageDataType;
TRF_FT WORD Width;

TRE FT WORD Height;

TRF FT BYTE ImageColorSpace;
TRE FT BYTE SourceType;

TRE FT WORD DeviceType;

TRE FT WORD Quality;

DWORD ImageDatalength;
BYTE *pData;
I
Declaration: RFID.h
Fields:
FaceImageType - type of face image, one of eCBEFF FaceImageType Or eC-
BEFF_FaceImageTypeFDIS values [15, § 5.7.1]
ImageDataType — format of storing image data, one of eCBEFF_ImageDataType
values [15, § 5.7.2]
Width — image width [15, § 5.7.3]
Height — image height [15, § 5.7.4]
ImageColorSpace — image color space, one of eCBEFF_ImageColorSpace values [15,
§ 5.7.5]
SourceType — image acquisition source, one of eCBEFF_ImageSourceType
values [15, § 5.7.6]
DeviceType — identifier of the device by which the image was acquired (is de-
fined by the manufacturer) [15, § 5.7.7]
Quality — image quality (reserved) [15, § 5.7.8]
ImageDatalength — size of pData array

pData — binary array representing the image in a format defined by the
value of ImageDataType field — JPEG or JPEG2000

XML-representation of the structure:

<ImageInfo>
<FaceImageType>
<ImageDataType>
<width>
<Height>
<ImageColorSpace>
<SourceType>
<DeviceType>
<Quality>
<Data Length="">
<!'[CDATA[]]>
</Data>
</ImageInfo>

Values and format of nodes correspond to the fields of TFacialImageInfo. Length at-
tribute of Data node contains the value of ImageDataLength field, node content -
Base64-encoded data from pData.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 135

6. SDK SOFTWARE TOOLS

6.3.29. TFingerBDB

TFingerBDB structure is used to store the contents of a single record with graphic data of
fingerprints (palms) [14]. ftbBDBFormatId field of the respective TRF_EF BIT record ob-
ject must contain the value 'FIR’ [14, §7.1.1].

struct TFingerBDB

{
TRE_FT WORD
TRF _FT WORD
TRF FT BYTE
TRF _FT WORD
TRF _FT WORD
TRE_FT WORD
TRF _FT WORD
TRF FT BYTE
TRF FT BYTE
TRF _FT WORD
BYTE

reserved;

}
Declaration:

Fields:
CaptureDevicelD -

ImageAcquisitionLevel -

ScaleUnits -

ScanResolutionHorz —

ScanResolutionVert -

ImageResolutionHorz -

ImageResolutionVert -

PixelDepth -

ImageCompressionAlgorithm

CaptureDevicelD;
ImageAcquisitionLevel;
ScaleUnits;
ScanResolutionHorz;
ScanResolutionVert;
ImageResolutionHorz;
ImageResolutionVert;
PixelDepth;
ImageCompressionAlgorithm;

FingersCount;
TFingerRecord *pFingers;

RFID.h

identifier of the device by which the templates of bio-
metric information were acquired (is defined by the
manufacturer) [14, § 7.1.4]

image acquisition level [14, § 7.1.5, Table 1]

image resolution units, one of eCBEFF_ScaleUnits
values [14, § 7.1.7]

horizontal resolution of the scanning device in
ScaleUnits units [14, § 7.1.8]

vertical resolution of the scanning device in ScaleU-
nits units [14, § 7.1.9]

horizontal resolution of the images in ScaleUnits
units [14, § 7.1.10]

vertical resolution of the images in ScaleUnits units
[14,87.1.11]

number of bits per color used in the images [14,
§7.1.12]

— identifier of image compression algorithm, one of
eCBEFF_ImageCompressionAlgorithm values [14,
§7.1.13]

reserved — reserved [14, § 7.1.14]
FingersCount — number of pFingers array elements
136 Version 3.5 RGVL.00010-01 3301 © Regula, 2021

6. SDK SOFTWARE TOOLS

pFingers — array of templates of fingerprints (palms), included in
the current biometric record.

XML-representation of the structure:

<FingerBDB>
<CaptureDevicelID>
<ImageAcquisitionLevel>
<ScaleUnits>
<ScanResolutionHorz>
<ScanResolutionVert>
<ImageResolutionHorz>
<ImageResolutionVert>
<PixelDepth>
<ImageCompressionAlgorithm>
<FingerRecord>

</FingerBDB>

Values and format of nodes correspond to the fields of TFingerBDB structure. The
number of FingerRecord elements corresponds to the number of elements in
pFingers array.

6.3.30. TFingerRecord

TFingerRecord structure is used to store data of a single template of fingerprints (palm)
from the record with biometric graphic data.

struct TFingerRecord

{
TRF FT BYTE Position;
TRE FT BYTE ImageQuality;
TRF _FT BYTE ImpressionType;
TRF_FT WORD HorzLineLength;
TRE _FT WORD VertLinelLength;

BYTE ViewsCount;
DWORD *ViewDatalLength;
BYTE **pViewData;
}i
Declaration: RFID.h
Fields:
Position — position of a finger (palm), one of eC-
BEFF_FingerPalmPosition values [14, § 7.2.2]
ImageQuality — image quality [14, § 7.2.5]
ImpressionType method of receiving a fingerprint, one of eC-
BEFF_FingerPalmImpression values [14, § 7.2.6]
HorzLineLength - image width, in pixels [14, § 7.2.7]

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 137

6. SDK SOFTWARE TOOLS

VertLineLength — image height, in pixels [14, § 7.2.8]

ViewsCount — number of ViewDataLength and pViewData arrays elements

ViewDatalLength - sizes of the respective binary arrays, pointers to which are con-
tained in pviewData

pViewData — array of pointers to binary arrays containing graphic images of var-

iants of the current fingerprint template. The data format of these
arrays is defined by the value of ImageCompressionAlgorithm
field of the parent TFingerBDB structure

XML-representation of the structure:

<FingerRecord>
<Position>
<ImageQuality>
<ImpressionType>
<HorzLineLength>
<VertLineLength>
<Views>
<ViewData Length="">
<! [CDATA[]]>
</ViewData>
</Views>
</FingerRecord>
Values and format of nodes correspond to the fields of TFingerRecord structure. The
number of ViewData elements in Views corresponds to the number of elements in
pViewData array. Length attribute of ViewData node contains the value of the cor-
responding element of ViewDataLength array, node content — Base64-encoded
pViewData data.

6.3.31. TFingerMinutiaeBDB

TFingerMinutiaeBDB structure is used to store the contents of a single record with da-
ta of the encoded fingerprint according to [13]. ftbBDBFormatId field of the respective
TRF_EF BIT record object must contain the value ‘'FMR' [13, §7.3.1].

struct TFingerMinutiaeBDB

{

TRE FT WORD CaptureDevicelD;
TRE FT WORD ImageWidth;

TRE FT WORD ImageHeight;

TRE FT WORD ResolutionX;
TRE_FT WORD ResolutionY;
long ViewsCount;

TFingerMinutiaeRecord *pFingers;

138 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

Declaration:
Fields:

CaptureDevicelD

ImageWidth
ImageHeight
ResolutionX
ResolutionY
ViewsCount

pFingers

RFID.h

identifier of the device by which the templates of biometric infor-
mation were acquired (is defined by the manufacturer) [13, § 7.3.4,
§ 7.3.5]

original fingerprint image width, in pixels [13, § 7.3.6]

original fingerprint image height, in pixels [13, § 7.3.7]

resolution of minutiae system on X, pixels/cm [13, § 7.3.6]
resolution of minutiae system on Y, pixels/cm [13, § 7.3.6]

number of pFingers array elements

array of structures containing information about the encoded vari-
ants of fingerprints included in the current record of the biometric
information

XML-representation of the structure:

<FingerMinutiaeBDB>
<CaptureDevicelID>

<ImageWidth>

<ImageHeight>
<ResolutionX>
<Resolution¥Y>

<FingerMinutiaeRecord>

</FingerMinutiaeBDB>
Values and format of nodes correspond to the fields of TFingerMinutiaeBDB structure.
The number of FingerMinutiaeRecord elements corresponds to the number of el-
ements in pFingers array.

6.3.32. TFingerMinutiaeRecord

TFingerMinutiaeRecord structure is used to store data of a single encoded variant of
fingerprint in the biometric data record.

struct TFingerMinutiaeRecord

{
long
long
long
long
long
TOneMinutia
long

FingerPosition;
ViewNumber;
Impression;
Quality;
MinutiaeCount;
*pMinutiae;
ExtendedDataCount;

TMinutiaeExtData *pExtendedData;

}s

Declaration:
Fields:

RFID.h

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 139

6. SDK SOFTWARE TOOLS

FingerPosition - finger position, one of eCBEFF_FingerPalmPosition values [13,

§7.4.1.1]

ViewNumber — number of the variant of fingerprint [13, § 7.4.1.1]

Impression - method of fingerprint acquisition, one of eC-
BEFF FingerPalmImpression values [13, § 7.4.1.3]

Quality — average quality of minutiae data [13, § 7.4.1.4]

MinutiaeCount — number of pMinutiae array elements

pMinutiae — array of pointers to structures containing minutiae information,

encoding the current print variant [13, § 7.4.2]
ExtendedDataCount — number of pExtendedData array elements
pExtendedData — array of structures containing additional information about the
current encoded fingerprint variant [13, § 7.5]

XML-representation of the structure:

<FingerMinutiaeRecord>
<FingerPosition>
<ViewNumber>
<Impression>
<Quality>
<Minutiae>
<Minutia>

</Minutiae>
<ExtendedData>
<MinutiaeExtData>

</ExtendedData>
</FingerMinutiaeRecord>

Values and format of nodes correspond to the fields of TFingerMinutiaeRecord
structure. The number of Minutiae elements corresponds to the number of elements
in pMinutiae array, the number of ExtendedData elements — to pExtendedData
array.

6.3.33. TOneMinutia

TOneMinutia structure is used to store information about a single minutia.

struct TOneMinutia
{
long Type;
long XPos;
long YPos;
long Angle;
long Quality;

140 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

Declaration: RFID.h

Fields:

Type — minutia type [13, § 7.4.2.1]

XPos — X-coordinate of minutia [13, § 7.4.2.2]
YPos — Y- coordinate of minutia [13, § 7.4.2.2]
Angle — angle of minutia position [13, § 7.4.2.3]
Quality — minutia quality [13, § 7.4.2.4]

XML-representation of the structure:

<Minutia>
<Type>
<XPos>
<YPos>
<Angle>
<Quality>

</Minutia>

Values and format of nodes correspond to the fields of TOneMinutia structure.

6.3.34. TMinutiaeExtData

TMinutiaeExtData structure is used to store additional information about the encoded
fingerprint.

struct TMinutiaeExtData

{
WORD DataType;
void *pData;

}s

Declaration: RFID.h

Field:

DataType — type of additional data stored in pData (one of eMinutiaeEx-
tendedDataType values)

pData — pointer to a structure of the additional data

Type of structure pointed to by pData, is defined by the contents of DataType:
e if DataType equal to medtRidgeCountData, pData contains a pointer to TMinu-
tiaeRidgeCountData structure;
e if DataType equal to medtCoreAndDeltaData, pData contains a pointer to
TCoreAndDeltaData structure;
e if DataType equal to medtZonalQualityData, pData contains a pointer to
TZonalQualityData structure.

XML-representation of the structure:

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 141

6. SDK SOFTWARE TOOLS

<MinutiaeExtData>

<DataType>

<node of data structure XML-representation>
</MinutiaeExtData>

Values and format of nodes correspond to the fields of TMinutiaeExtData structure.

6.3.35. TMinutiaeRidgeCountData

TMinutiaeRidgeCountData structure is used to store additional information about the
encoded fingerprint — number of ridges between the pairs of minutiae [13, §7.5.2].

struct TMinutiaeRidgeCountData

{
long ExtractionMethod;
long DataCount;
TRidgeCountData *RidgeCountData;

i

Declaration: RFID.h

Fields:

ExtractionMethod — method of ridge detection, one of eRidgeCountExtractionMethod
values

DataCount — number of RidgeCountData array elements

RidgeCountData — array of structures of data on the number of ridges between the

pairs of minutiae

XML-representation of the structure:

<MinutiaeRidgeCountData>
<ExtractionMethod>
<RidgeCountData>
<RidgeCountDataltem>

</RidgeCountData>
</MinutiaeRidgeCountData>

Values and format of nodes correspond to the fields of TMinutiaeRidgeCountData
structure. The number of RidgeCountData elements corresponds to the number of
elements in RidgeCountData array.

6.3.36. TRidgeCountData

TRidgeCountData structure is used to store information about the number of ridges lo-
cated between the pair of minutiae, in additional data of the encoded fingerprint.

struct TRidgeCountData
{

142 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

BYTE MinutiaeIndexl;
BYTE MinutiaeIndex?2;
BYTE Count;

i

Declaration: RFID.h

Field:

MinutiaeIndexl - index of the first minutia of the given pair (in pMinutiae array of
TFingerMinutiaeRecord structure)

MinutiaeIndex2 - index of the second minutia of the given pair (in pMinutiae array
of TFingerMinutiaeRecord structure)

Count - number of ridges located between the present pair of minutiae.

XML-representation of the structure:

<RidgeCountDataltem>
<MinutiaeIndexl>
<MinutiaeIndex2>
<Count>

</RidgeCountDataltem>

Values and format of nodes correspond to the fields of TRidgeCountData structure.

6.3.37. TCoreAndDeltaData

TCoreAndDeltaData structure is used to store additional information on the encoded
fingerprint — data on cores and deltas [13, §7.5.3].

struct TCoreAndDeltaData
{

long CoreAngleIsSpecified;
long CoresCount;

TCoreData *CoreData;

long DeltaAnglelIsSpecified;
long DeltasCount;

TDeltaData *DeltaData;
}s

Declaration: RFID.h

Fields:

CoreAngleIsSpecified - flag showing the presence of angular information on cores
CoresCount — number of CoreData array elements

CoreData — array of data on cores

DeltaAnglelsSpecified — flag showing the presence of angular information on deltas
DeltasCount — number of DeltaData array elements

DeltaData — array of data on deltas

XML-representation of the structure:

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 143

6. SDK SOFTWARE TOOLS

<CoreAndDeltaData>
<CoreAnglelIsSpecified>
<DeltaAnglelsSpecified>
<CoreData>
<CoreDataltem>

</CoreData>
<DeltaData>
<DeltaDataltem>

</DeltaData>
</CoreAndDeltaData>

Values and format of nodes correspond to the fields of TCoreAndDeltaData structure.
The number of CoreData elements corresponds to the number of elements in
CoreData array, the number of DeltaData elements —to DeltaData array.

6.3.38. TCoreData

TCoreData structure is used to store information on a single core in the additional data of
the encoded fingerprint.

struct TCoreData
{

WORD X;

WORD Y;

BYTE Angle;
i

Declaration: RFID.h

Fields:

X — X-coordinate of the core point

Y — Y- coordinate of the core point

Angle — angle of the core point (in units of 1,40625 degrees). It has a

value only in case of CoreAngleIsSpecified=TRUE in the
parent TCoreAndDel taData structure

XML-representation of the structure:

<CoreDataltem>
<X>
<Y>
<Angle>
</CoreDataltem>

Values and format of nodes correspond to the fields of TCoreData structure.

144 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

6.3.39. TDeltaData

TDeltaData structure is used to store information about a single delta in the additional
data of the encoded fingerprint.

struct TDeltaData
{

WORD X;

WORD Y;

BYTE Angles|[3];
}i

Declaration: RFID.h

Field:

X — X- coordinate of the delta point

Y — Y- coordinate of the delta point

Angles[3] — angles of delta point (in units of 1,40625 degrees). It has a value

only in case of DeltaAngleIsSpecified=TRUE in the parent
TCoreAndDeltaData structure

XML-representation of the structure:

<DeltabDataltem>
<X>
<Y>
<Anglel>
<Angle2>
<Angle3>
</DeltaDataltem>

Values and format of nodes correspond to the fields of TDeltaData structure.

6.3.40. TZonalQualityData

TZonalQualityData structure is used to store information about the fingerprint image quali-
ty map, divided into zones, in the additional data of the encoded fingerprint [13, §7.5.4].

struct TZonalQualityData
{
BYTE CellWidth;
BYTE CellHeight;
BYTE CellInfoBitDepth;
long CellDatalLength;
BYTE *CellQualityData;
}i

Declaration: RFID.h
Fields:

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 145

6. SDK SOFTWARE TOOLS

CellwWidth — grid spacing, dividing the image into zones horizontally
CellHeight — grid spacing, dividing the image into zones vertically
CellInfoBitDepth — number of bits representing the value of the quality of one zone
CellDataLength - length of CellQualityData array

CellQualitybata - array of element of quality assessment of image zones

XML-representation of the structure:

<ZonalQualityData>
<Cellwidth>
<CellHeight>
<CellInfoBitDepth>
<CellQualityData Length="">
<! [CDATA[]]>
</CellQualityData>
</ZonalQualityData>

Values and format of nodes correspond to the fields of TZonalQualityData structure.
Length attribute of CellQualityData node contains the value of
CellDataLength field, node content — Base64-encoded CellQualityData data.

6.3.41. TIrisBDB

TIrisBDB structure is used to store the contents of a single record with iris graphic data
according to [16]. ftbBDBFormatId field of the respective TRF_EF BIT record object
must contain the value 'TIR'".

struct TIrisBDB

{
TRE_FT WORD CaptureDevicelD;
TRE_FT WORD ImageProperties;
TRF_FT WORD IrisDiameter;
TREF _FT WORD ImageFormat;
TRE FT WORD ImageWidth;
TRF_FT WORD ImageHeight;
TRE FT BYTE IntensityDepth;
TRE FT BYTE ImageTransformation;
BYTE DUIDI[16];
BYTE EyesCount;
TEyeRecord * pEyes;

i

Declaration: RFID.h

Field:

CaptureDevicelID — identifier of the device by which the templates of biometric in-
formation were acquired (is defined by the manufacturer)

ImageProperties — properties of 1images, a combination of eIri-

sImageProperties values
IrisDiameter — expected diameter of iris, points

146 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

ImageFormat — identifier of image’s format, one of eIrisImageFormat values
ImageWidth - width of images

ImageHeight - height of images

IntensityDepth — number of bits per color used in images

ImageTransformation - type of transformation to polar coordinates, one of eIri-
sImageTransformation values

DUID — unique identifier of the device by which the templates of bio-
metric information were acquired

EyesCount — number of pEyes array elements

pEyes — array of biometric information templates

The presence of a particulat image property is determined by applying the appropriate mask
from eIrisImageProperties to the contents of ImageProperties field, for example:

bool present = (value & iipmScanType_Mask) = iipmScanType_Corrected;

XML-representation of the structure:

<IrisBDB>
<CaptureDeviceID>
<ImageProperties>
<IrisDiameter>
<ImageFormat>
<ImageWidth>
<ImageHeight>
<IntensityDepth>
<ImageTransformation>
<DUID>
<EyeRecord>

</IrisBDB>

Values and format of nodes correspond to the fields of TIrisBDB structure. The number
of EyeRecord elements corresponds to the number of elements in pEyes array.
DUID node contains Base64-encoded data.

6.3.42. TEyeRecord

TEyeRecord structure is used to store data of a single template of iris image from the bio-
metric graphic data record [16, § 5.5].

struct TEyeRecord

{
TREF FT BYTE BiometricSubtype;
WORD ImagesCnt;
TIrisImage * plImages;

}s

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 147

6. SDK SOFTWARE TOOLS

Declaration: RFID.h

Field:

BiometricSubtype - type of template, one of eIrisSubtype values

ImagesCnt — number of pImages array elements

pImages — array of variants of the current biometric information template

XML-representation of the structure:

<EyeRecord>
<BiometricSubtype>
<IrisImage>

</EyeRecord>

Values and format of nodes correspond to the fields of TIrisBDB structure. The number
of IrisImage elements corresponds to the number of elements in pImages array.

6.3.43. Tirisimage

TIrisImage structure is used to store a single variant of iris template from the biometric
graphic data record [16, §5.5].

struct TIrisImage

{
TRF FT WORD ImageNumber;
TRF FT BYTE Quality;
TRF_FT WORD RotationAngle;
TRE_FT WORD RotationUncertainty;

DWORD DatalLength;
BYTE *pData;
i
Declaration: RFID.h
Field:
ImageNumber — serial number of the template variant
Quality — image quality [16, § 5.5, Table A.1]
RotationAngle — rotation angle of iris image. The value calculated by the for-
mula

(signed short) round(65536*angle/360) mod 65536
where angle — rotation angle, in degrees;

RotationUncertainty — allowed rotation angle of iris image. The value calculated by
the formula

(signed short) round(65536*angle/180)

where angle — rotation angle, in degrees;

148 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

Datalength - size of pData array

pData — binary array containing graphic image of the current variant
of iris template. The data format is defined by the contents of
ImageFormat field of the parent TIrisBDB structure

XML-representation of the structure:

<IrisImage>
<ImageNumber>
<Quality>
<RotationAngle>
<RotationUncertainty>
<Data Length="">

<![CDATA[]]>

</Data>

</ IrisImage>

Values and format of nodes correspond to the fields of TIrisImage structure. Length attribute of
Data node contains the value of DataLength field, node content — Base64-encoded pData data.

6.3.44. TRF_EF_DG567

TRF_EF DG567 structure is used to store the contents of EF.DG5, EF.DG6, EF.DG7 infor-
mational data groups of ePassport application and EF.DG5 of eDL application — addi-
tional graphic data.

struct TRF_EF DG567

{
BYTE nType;
BYTE nRecords;
TRF FT BYTES**pImages;

}i

Declaration: RFID.h
Fields:
nType - type of informational data group; always contains

RFDGT_DG5, RFDGT_DG6, RFDGT_DG7 or RFDGT_EDL_DG5
values from eRFID DataGroupTypeTag enumeration re-

spectively

nRecords — number of pImages array elements

pImages — array of pointers to container structures included in the struc-
ture of informational data group and containing graphic in-
formation

The binary data in pImages elements are the images of files containing the encoded
graphics. For ePassport application, JPEG algorithm (ISO/IEC 10918) is applied for en-

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 149

6. SDK SOFTWARE TOOLS

coding of EF.DG5 and EF.DG7 groups; ANSI/NIST-ITL 1-2000 - for EF.DG6 group. For
eDL application, WSQ (IAFIS-IC-0110v3), JPEG (ISO/IEC 10918) or JPEG2000 (ISO/IEC
15444-1) formats can be used.

XML-representation of the structure:

<RFID DG5>

<Type> - numeric nType value
<Images>

<ImageRecord> - XML-representation of TRF_EF_BYTES structure, for

each element of pImages array
</Images>
</RFID DG5>

Name of the root node corresponds to the informational data group.

6.3.45. TRF_EF_DG8910

TRF _EF DG8910 structure is used to store the contents of EF.DGS8, EF.DG9 and EF.DG10 in-
formational data groups (ePassport application). Since the format of these data groups has
not yet been defined in standard their contents are stored in as a set of standard binary arrays.

struct TRF_EF DG8910

{
BYTE nType;
BYTE nRecords;
TRF _FT BYTES**pContents;

}s

Declaration: RFID.h
Fields:
nType — type of informational data group; always contains

RFDGT_DG8, RFDGT_DG9 or RFDGT_DG10 values from
eRFID_DataGroupTypeTag enumeration respectively
nRecords — number of pContents array elements
pContents — array of pointers to binary data arrays

XML-representation of the structure:

<RFID DG8>
<Type> — numeric nType value
<Contents>
<Record> - XML- representation of TRF_EF BYTES structure, for
each element of pContents array
</Contents>

</RFID DG8>

150 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

Name of the root node corresponds to the informational data group.

6.3.46. TRF_EF_DG11

TRF _EF DG11 structure is used to store the contents of EF.DG11
additional personal data of the DO (ePassport application).

information group of

struct TRF_EF DG11
{
BYTE
TRE _FT STRING
TRF_FT STRING
TRE _FT STRING
TRF_FT STRING
TRF _FT STRING
TRF _FT STRING
TRF _FT STRING
TRF _FT STRING
TRF _FT STRING
TRF _FT STRING
TRF _FT STRING
TRF _FT BYTES
BYTE
TRF _FT STRING

}s

nType;

ftsFullName;
ftsPersonalNumber;
ftsBirthday;
ftsBirthdayPlace;
ftsPermanentAddress;
ftsPhone;
ftsProfession;
ftsTitle;
ftsPersonalSummary;
ftsOtherID;
ftsCustodyInfo;
ftbProofOfCitizenship;
nNamesCount;
ftsFullNamesAdditional[1l6];

Declaration: RFID.h

Fields:

nType — type of informational data group; always contains REDGT_DG11
value from eRFID_DataGroupTypeTag enumeration

ftsFullName — DO's full name in national symbols (ICAO 9303)

ftsPersonalNumber — personal number

ftsBirthday — full date of birth (in "yyyymmdd" format, where yyyy - year,
mm - month, dd - day)

ftsBirthdayPlace — place of birth

ftsPermanentAddress — permanent place of residence

ftsPhone — phone number

ftsProfession — profession

ftsTitle - title

ftsPersonalSummary — additional data

ftsOtherID — other valid ID numbers (separated by the symbol '<')

ftsCustodyInfo custody information

ftbProofOfCitizenship

nNamesCount

ftsFullNamesAdditional —

image of graphic file of document image proving any citizen-
ship JPEG by ISO/IEC 10918)

number of ftsFullNamesAdditional array elements
DO's other names (ICAO 9303)

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021

151

6. SDK SOFTWARE TOOLS

XML-representation of the structure:

<RFID DG11>
<Type>
<FullName>
<PersonalNumber>
<Birthday>
<BirthdayPlace>
<PermanentAddress>
<Phone>
<Profession>
<Title>
<PersonalSummary>
<OtherID>
<CustodyInfo>
<ProofOfCitizenship>

</RFID DG11>

Values and format of nodes correspond to the fields of TRF_EF_DG11 structure.

6.3.47. TRF_EF_DG12

TRF_EF_DG12 structure is used to store the contents of EF.DG12 information group of
additional information on the document (ePassport application).

struct TRF_EF DG12
{
BYTE
TRF _FT STRING
TRF_FT STRING
TRF _FT STRING
TRF_FT STRING
TRF_FT BYTES
TRF_FT BYTES
TRF_FT STRING
TRF_FT STRING
BYTE
TRF_FT STRING
i

nType;
ftsAuthority;
ftsIssueDate;
ftsObservation;
ftsTax;
ftbImageFront;
ftbImageRear;
ftsPersonalization;
ftsSerialNumber;
nPersonsNumber;
ftsPersonName[16];

Declaration: RFID.h

Fields:

nType - type of informational data group; always contains
REFDGT_DG12 value from eRFID DataGroupTypeTag enu-
meration

ftsAuthority — authority that has issued the document

ftsIssueDate — date of issue (in "yyyymmdd" format, where yyyy — year, mm
— month, dd — day)

ftsObservation — observation

152 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

ftsTax — tax information

ftbImageFront — image of graphic file of document face side image (JPG by
ISO/IEC 10918)

ftbImageRear — image of graphic file of document reverse side image (JPG by
ISO/IEC 10918)

ftsPersonalization - date and time of document personalization (in

"yyymmddhhmmss" format, where yyyy — year, mm — month,
dd - day, hh — hour, mm — minute, ss — second)

ftsSerialNumber — serial number of personalization system
nPersonsNumber — number of ftsPersonName array elements
ftsPersonName — names of other persons mentioned in the document (ICAO 9303)

XML-representation of the structure:

<RFID DG12>
<Type>
<Authority>
<IssueDate>
<Observation>
<Tax>
<ImageFront>
<ImageRear>
<Personalization>
<SerialNumber>

</RFID DG12>

Values and format of nodes correspond to the fields of TRF_EF_DG12 structure.

6.3.48. TRF_EF_DG_BINARY_ARRAY

TRF_EF DG_BINARY ARRAY structure is used to store the binary representation of the
contents of informational data group of ePassport application, use of which is restricted
to the internal use of SDK (DG14, DG15, EF.SOD) or the format of which is private for or-
ganizations having issued the travel document (DG13).

struct TRF_EF DG_BINARY ARRAY

{
BYTE nType;

TRE FT BYTES pContents;
}i

Declaration: RFID.h

Field:

nType - type of informational data group; contains
eRFID DataGroupTypeTag values

pContents — binary array of the data group contents

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 153

6. SDK SOFTWARE TOOLS

XML-representation of the structure:

<RFID DG13>
<Type>
<Contents>

</RFID DG13>

Name of the root node corresponds to the informational data group. Values and format of
nodes correspond to the fields of TRF_EF_DG_BINARY ARRAY structure.

6.3.49. TRF_EF_DG16

TRF_EF_DG16 structure is used to store the contents of EF.DG16 data group with infor-
mation on persons to notify in case of emergency (ePassport application).

struct TRF_EF DG16

{
BYTE nType;
BYTE nRecords;
TRF _EF PERSON** pPersons;

}i

Declaration: RFID.h

Fields:

nType — type of informational data group; always contains REDGT_DG16
value from eRFID_DataGroupTypeTag enumeration

nRecords — number of pPersons array elements

pPersons — array of pointers to structures with information about specific
persons

XML-representation of the structure:

<RFID DGlo6>
<Type>
<Persons>
<Personltem>

</Persons>
</RFID_DG16>

Values and format of nodes correspond to the fields of TRF_EF _DG16 structure. The
number of Persons elements corresponds to the number of elements in pPersons
array.

6.3.50. TRF_EF_PERSON

TRF_EF_PERSON structure is used to store information about the person to notify in case
of emergency.

154 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

struct TRF_EF_PERSON
{
TRF FT STRING ftsRecordDate;
TRF FT STRING ftsName;
TRF FT STRING ftsPhone;
TRF FT STRING ftsAddress;
i

Declaration: RFID.h
Fields:

ftsRecordDate — date of record
ftsName — full name
ftsPhone — phone number
ftsAddress — address

XML-representation of the structure:

<Personltem>
<RecordDate>
<Name>
<Phone>
<Address>

</Personltem>

Values and format of nodes correspond to the fields of TRF_EF_PERSON structure.

6.3.51. TRF_Authentification

TRF_ Authentification structure is used to store the results of performing different
stages of data authentication when working with SDK in the batch mode (see section 5.7.7).

struct TRF_Authentification
{

DWORD SODErrorStatus;
DWORD nSODNotifications;
DWORD *SODNotifications;
DWORD version;

TRF_FT BYTES SO_DigestAlgorithm;
TRF_FT BYTES SO_1ID;

DWORD nDataGroupDigests;
TREF _SOD DG Digest *DataGroupDigests;
DWORD nSignerInfos;

TREF SOD SignerInfo **SignerInfos;
TRF_FT BYTES AA KeyAlgorithm;
DWORD AA Status;

TRF_FT BYTES CA_Scheme;

TRF_FT BYTES CA KeyAlgorithm;
DWORD CA Status;

TRF_FT BYTES TA Scheme;

DWORD TA Status;

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 155

6. SDK SOFTWARE TOOLS

}s

Declaration:
Fields:
SODErrorStatus

nSODNotifications
SODNotifications

version
SO_DigestAlgorithm

SO_ID

nDataGroupDigests
DataGroupDigests

nSignerInfos

SignerInfos

AA_KeyAlgorithm

AA _Status

CA_Scheme

CA_KeyAlgorithm

CA_Status

TA_Scheme
TA_Status

RFID.h

status of preliminary EF.SOD data group parse (one of eS-
OD Error_Status values)

number of SODNotifications array elements

array of the codes of notifications appeared during the pro-
cess of preliminary EF. SOD data group parse (respective val-
ues from elLDS_ParsingErrorCodes or
eLDS_ParsingNotificationCodes enumerations)
EF.SOD structure version [3, § C.1]

algorithm identifier of informational data groups hashing [3,
§3.35,C1]

EF.SOD structure identifier [3, § C.1, C.2]

number of DataGroupDigests array elements

array of results of comparison of hash values computed by
the data read from the RFID-chip, with values from EF.SOD
(for each of the present informational data group)

number of SignerInfos array elements

array of results of the authentication of digital signatures
from EF.SOD

algorithm identifier of active authentication key [3, § 3.4.2,
D.1,D.2]

result of active authentication (a value from
elDS_ParsingErrorCodes or
eLDS_ParsingNotificationCodes)

CA scheme algorithm identifier [1, § A.1.1.1, A.2]

CA key algorithm identifier [1, § A.1.1.1]

result of CA (a value from eLDS_ParsingErrorCodes or
eLDS_ParsingNotificationCodes)

TA scheme algorithm identifier [1, § A.1.1.2, A.3]

result of TA (a value from eLDS_ParsingErrorCodes or
eLDS_ParsingNotificationCodes)

XML-representation of the structure:

<RFID Authentication Info>

<SODErrorStatus>

— numeric SODErrorStatus value

<SODNotifications>
<SODNotification Value=""/>

</SODNotifications>—- numeric SODNotifications values (in Value attrib-

<Version>

utes)
— numeric Version value

156

Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

<SO DigestAlgorithm> - text SO DigestAlgorithm value

<SO_ID>

— text SO_IDvalue

<DataGroupDigests>
<DataGroupDigest>

</DataGroupDigests>- XML-repesentations of DataGroupDigests elements
<SignerInfos>
<SignerInfo>

</SignerInfos> - XML-repesentations of SignerInfos elements
<AA KeyAlgorithm> - text AA KeyAlgorithm value

<AA Status>
<CA_ Scheme>

— numeric AA Status value
- text CA Scheme value

<CA KeyAlgorithm> - text CA KeyAlgorithm value

<CA Status>
<TA Scheme>
<TA Status>

— numeric CA Status value
- text TA Scheme value
— numeric TA Status value

</RFID Authentication Info>

6.3.52. TPassiveAuthenticationData

TRF_TPassiveAuthenticationData structure is used to describe the parameters and
the contents of DS-certificate required to verify the digital signature of EF.SOD security ob-
ject when running in batch mode (see section 5.7.7).

struct TPassiveAuthenticationData

{
TRF_FT BYTES
TRF_FT BYTES
TRF_FT BYTES
BYTE

Issuer;

SerialNumber;
SubjectKeyIdentifier;
*DS Certificate;

DWORD DS Certificate Length;
}i
Declaration: RFID.h
Fields:
Issuer — identifier of the organization that issued the certificate;
SerialNumber — certificate serial number;
SubjectKeyIdentifier — identifier of the signature subject;

DS _Certificate

DS_Certificate_Length

— binary array of the certificate contents;
DS_Certificate length.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 157

6. SDK SOFTWARE TOOLS

6.3.53. TRF_SOD_DG_Digest

TRF_SOD_DG_Digest structure is used to store the result of comparison of hash value
computed by the data read from the RFID-chip with the value from EF.SoOD for a single
informational data group.

struct TRF_SOD DG Digest
{
DWORD DataGroup;
DWORD DigestCheckResult;

}i

Declaration: RFID.h

Fields:

DataGroup — index of informational data group (value from 1 to 16)
DigestCheckResult - result of comparison for the given group (respective value

from eLDS_ParsingErrorCodes or
eLDS_ParsingNotificationCodes)

In XML-structures represented as a single node:
<DataGroupDigest DigestCheckResult="" DataGroup=""/>

Node attributes correspond to the fields of TRF_SOD DG Digest structure and contain
their numerical values.

6.3.54. TRF_SOD_Signerinfo

TRF_SOD_SignerInfo structure is used to store the result of the verification of a single
digital signature of the number present in EF . SOD.

struct TRF_SOD_SignerInfo
{

DWORD ErrorStatus;
DWORD nNotifications;
DWORD *Notifications;
TRE SOD Certificate *Certificate;
DWORD version;
TRF_FT BYTES DigestAlgorithm;
TREF _FT BYTES SignatureAlgorithm;
}i
Declaration: RFID.h
Field:
ErrorStatus — result of the digital signature verification (respective value

from eLDS_ParsingErrorCodes or
eLDS_ParsingNotificationCodes)

158 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

nNotifications — number of Notifications array elements

Notifications — array of codes of non-critical annotations appeared during
the process of the digital signature verification (respective
values from eLDS_ParsingErrorCodes or
eLDS_ParsingNotificationCodes)

Certificate — information on certificate corresponding to the verified digi-
tal signature

version — version of the digital signature data structure

DigestAlgorithm — digital signature hash-function algorithm identifier

SignatureAlgorithm - digital signature algorithm identifier

XML-representation of the structure:

<SignerInfo>
<ErrorStatus> — numeric ErrorStatus value
<Notifications>
<Notification Value=""/>

</Notifications> — numeric values of Notifications (in Value attributes)
<Certificate> — XML-representation of Certificate field

<Version> - numeric Version value

<DigestAlgorithm> - text DigestAlgorithm value

<SignatureAlgorithm> - text SignatureAlgorithm value
</SignerInfo>

6.3.55. TRF SOD Certificate

TRF_SOD_Certificate structure is used to store information on a single certificate.

struct TRF_SOD Certificate

{
TREF_FT BYTES SignatureAlgorithm;
TRF _FT BYTES Issuer;
TRF _FT BYTES Subject;
TRF_FT BYTES ValidFrom;
TRF_FT BYTES ValidTo;

bi

Declaration: RFID.h

Fields:

SignatureAlgorithm - digital signature algorithm identifier

Issuer — text information on the organization that issued the certifi-

cate, in the format
«<code_of state>, <name_of organization>, <current_name>»

Subject — text information on the organization that performed person-
alization of document, in the format

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 159

6. SDK SOFTWARE TOOLS

«<code_of state>, < name_of organization >, < current_name >»

ValidFrom — date of start of certificate validity, in «YYYYMMDD» format,
where YYYY — year, MM — month, DD — day
ValidTo — certificate date of expiry, in «<YYYYMMDD» format, where YYYY

— year, MM — month, DD — day

XML-representation of the structure:

<Certificate>
<SignatureAlgorithm> - text SignatureAlgorithm value
<Issuer> - text Issuer value
<Subject> - text Subject value
<ValidFrom> - text VvalidFrom value
<ValidTo> - text validTo value
</Certificate>

6.3.56. TMIFARE_KeyTable

TMIFARE KeyTable structure serves to transfer a set of authentication keys to the control
library for use when reading data via MIFARE® Classic Protocol (see section 5.7.3).

struct TMIFARE KeyTable
{
BYTE KeyA[40][6];
BYTE KeyB[40][6];
i

Declaration: RFID.h
Fields:

KeyA — key array A
KeyB — key array B

6.3.57. TRF_EID_TEXT_ARRAY

TRF_EID_TEXT_ARRAY structure is used to store the contents of informational data group
of eIDapplication as a text string [24, part 2, §A.2] (see section 5.8.10).

struct TRF_EID TEXT ARRAY
{
BYTE nType;
TREF FT STRING Contents;

}i

160 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

Declaration: RFID.h

Fields:

nType — ASN.T1-tag of informational data group
(eRFID DataGroupTypeTagq)

Contents — string contents (UTF8 format is possible)

XML-representation of the structure:

<eID DG1>
<Type>
<Contents>

</eID DG1>

Name of the root node corresponds to the informational data group. Values and format of
nodes correspond to the fields of TRF_EID TEXT ARRAY structure.

6.3.58. TRF_EID_GENERAL_PLACE

TRF_EID GENERAL_PLACE structure is used to store the contents of informational data
group of eID application represented as ASN.1 GeneralPlace object [24, part 2, §A.2]
(see section 5.8.10). Describes the place of residence or birth.

struct TRF_EID GENERAL PLACE
{
BYTE nType;
int choice;
//choice==
TRF_FT STRING street;
TRF_FT STRING city;
TRF_FT_STRING state;
TRE FT STRING country;
TRF FT STRING =zipcode;
TRF_FT STRING freetextPlace; //choice==
TRF_FT STRING noPlacelnfo; //choice==
}i

Declaration: RFID.h

Fields:

nType — ASN.1-tag of informational data group
(eRFID_DataGroupTypeTagq)

choice — variant of the data group contents representation (values
0,1 or?2)

Variant of representing the data with choice = 0:

street — street
city — City
state — region
country — country

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 161

6. SDK SOFTWARE TOOLS

zipcode — zip code

Variant of representing the data with choice = 1:
freetextPlace — text in free form with a description of some address (location)

Variant of representing the data with choice = 2:
noPlaceInfo — text in free form describing the reasons for the absence of
information

For all strings UTF8 format is allowed for the contents.

XML-representation of the structure:

<eID DG9>
<Type>
<Street>
<City>
<State>
<Country>
<ZipCode>
<FreetextPlace>
<NoPlaceInfo>
</eID DG9>

Name of the root node corresponds to the informational data group. Values and format of
nodes correspond to the fields of TRF_EID GENERAL PLACE structure.

6.3.59. TRF_EID_TEXT

TRF_EID_TEXT structure is used to store the contents of informational data group of eID
application represented as ASN.1 Text object [24, § E.2] (see section 5.8.10).

struct TRF_EID_TEXT

BYTE nType;
int choice;
//choice==0
TRE_FT_STRING uncompressed;
//choice==1
TRF_FT_BYTES compressed;
i

Declaration: RFID.h
Fields:
nType — ASN.T1-tag of informational data group
(eRFID DataGroupTypeTagq)
choice — variant of the data group contents representation (values 0 or 1)

Variant of representing the data with choice = 0:
uncompressed — free UTF8-text.

162 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

Variant of representing the data with choice = 1:
compressed — free UTF8-text in compressed form (DEFLATE algorithm).

XML-representation of the structure:

<eID DG19>
<Type>
<Uncompressed>
<Compressed>

</eID DG19>

Name of the root node corresponds to the informational data group. Values and format of
nodes correspond to the fields of TRF_EID TEXT structure.

6.3.60. TRF_EID_OPTIONAL_DATA

TRF _EID OPTIONAL DATA structure is used to store the contents of informational data
group of eID application represented as a list of ASN.1 OptionalData objects [24, part 2,
8A.2] (see section 5.8.10).

struct TRF_EID OPTIONAL DATA
{
BYTE nType;
BYTE nRecords;
TRF EID OPTIONAL DATA ITEM **pDataArray;

}s

Declaration: RFID.h

Fields:

nType — ASN.1-tag of informational data group
(eRFID DataGroupTypeTagq)

nRecords — number of pDataArray array elements

pDataArray — array of optional data elements

XML-representation of the structure:

<eID DG12>
<Type>
<DataArray>
<OptionalDataltem>

</DataArray>
</eID DG12>

Name of the root node corresponds to the informational data group. Values and format of
nodes correspond to the fields of TRF_EID OPTIONAL DATA structure. The number of
DataArray elements corresponds to the number of elements in pbataArray array.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 163

6. SDK SOFTWARE TOOLS

6.3.61. TRF_EID_OPTIONAL_DATA_ITEM

TRF_EID_OPTIONAL DATA_ITEM structure is used to store the contents of a single ele-
ment of the list of optional data of e 7D application information group.

struct TRF_EID OPTIONAL DATA ITEM
{

TRF FT STRING type id;

TRF_FT BYTES data;
}s

Declaration: RFID.h

Fields:

type_id — identifier of the optional data type (OID)

data — binary array of the optional data element contents

XML-representation of the structure:

<OptionalDataltem>
<TypelD>
<Data Length="">
<! [CDATA[]]>
</Data>
</OptionalDataltem>

Values and format of nodes correspond to the fields of TRF_EID OPTIONAL DATA ITEM
structure.

6.3.62. TRFID AntennaParamsPair

TRFID AntennaParamsPair structure is used to describe a single element of the list of
RFID-chip reader antenna parameters (see section 5.4.5).

union TRFID AntennaParamsPair
{
BYTE RawParams|[8];
struct
{
TRFID AntennaParams Layer3;
TRFID AntennaParams Layer4;
i
i

Declaration: RFID.h

Fields:

RawParams — representation of the parameters in the form of one-
dimensional array of bytes

Layer3 — set of antenna parameters for the commands of Layer 3 level

164 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

Layerd - set of antenna parameters for the commands of Layer 4 level

6.3.63. TRFID AntennaParams

TRFID AntennaParamsPair structure is used to describe a set of antenna parameters
of the RFID-chip reader for the commands of a single level (see section 5.4.5).

union TRFID_ AntennaParams
{
BYTE RawParams[4];
struct{
BYTE SensA;
BYTE KRecA;
BYTE SensB;
BYTE KRecB;
Y i
}i

Declaration: RFID.h

Fields:

RawParams — representation of the parameters in the form of one-
dimensional array of bytes

SensA — coefficient of sensitivity when working with chips of type 2

KRecA — gain when working with chips of type 2

SensB — coefficient of sensitivity when working with chips of type B

KRecB — gain when working with chips of type B

6.3.64. TCustomRawDatalist

TCustomRawDataList structure is used to describe a list of containers for storing binary
data arrays.

struct TCustomRawDatalist
{

int Count;
TCustomRawDataToParse *pArray;

}s

Declaration: RFID.h

Fields:

Count — number of pArray array elements
pArray — number of array objects

6.3.65. TCustomRawData / TCustomRawDataToParse

TCustomRawData structure is used to describe a binary data array.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 165

6. SDK SOFTWARE TOOLS

typedef struct TCustomRawData TCustomRawDataToParse;

struct TCustomRawData
{
BYTE *buffer;
DWORD length;
}s

Declaration: RFID.h

Fields:

buffer — binary data array
length — length of buffer array

6.3.66. TRFID Session

TRFID _Session structure is used to describe the results of work with the SDK with-
in the context of the current communication session with electronic document (see
section 5.8).

struct TRFID_Session
{

DWORD VirtualMode;
DWORD SDKVersion;
DWORD DriverVersion;
DWORD FirmwareVersion;
DWORD RFControlMode;

TRFID CardPropertiesExt CardProperties;
TRFID AntennaParamsPair AntennaSetup;

DWORD ExtLeSupport;
DWORD TotalBytesSent;
DWORD TotalBytesReceived;
DWORD ProcessTime;
TREID AccessKey Session key;
TREFID Terminal Session terminal;
DWORD Session procedure;
TRFID AccessKey Session eSignPIN;
TTerminalVerificationData VerifiedData;
TREFID Items List *pRootFiles;
TREFID Items List *pApplications;
int ActiveApplicationIdx;
TREFID Items List *pAccessControls;
TREFID Items List *pSecurityObjects;
DWORD Status;

}i

Declaration: RFID.h

Field:

VirtualMode — sign of virtual session when working with loaded data from a

previous communication session with the electronic docu-
ment (see section 5.8.22)

166 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

SDKVersion
DriverVersion

FirmwareVersion

RFControlMode
CardProperties
AntennaSetup
ExtLeSupport
TotalBytesSent
TotalBytesReceived
ProcessTime
Session_key
Session_terminal
Session_procedure
Session eSignPIN
VerifiedData
pRootFiles

pApplications

ActiveApplicationIdx
pAccessControls

pSecurityObjects

version of the main control library (see section 6.1.7)
version of RFID-reader driver (see section 5.3) in ‘A.B.C.D’

format, where
«A = HIBYTE (HIWORD ())
*B = LOBYTE (HIWORD ())
«C = HIBYTE (LOWORD ())

D = LOBYTE (LOWORD ())
RFID-reader firmware version (see section 5.3) in ‘'A.B’ for-
mat, where

«A = HIBYTE (LOWORD ())

*B = LOBYTE (LOWORD ())
working mode of the main control library (see sections 5.4.1,
5.4.2). Combination of eRFID ControlRF values
set of electronic document chip characteristics (see section 5.8.3)
not used since SDK version 3.5;
sign of support of RFID-chip for extended length commands
of reading (see section 5.4.4) (RFID_Error_NotPerformed,
RFID Error_NotAvailable or RFID Error_NoError)
total number of bytes transmitted to the RFID-chip during
the whole session
total number of bytes received from the RFID-chip during the
whole session
total time of all operations performed during the session, ms
used secure data access key (see section 5.8.6)
terminal configuration (see section 5.8.4)
type of performed document authentication procedure (see
section 5.8.5)
used access key to the functions of eSign application (see
section 5.8.21)
contents of the verified auxiliary data (see section 5.8.18)
list of containers to store information about the read files of
the root Master File (see section 5.8.10). List elements are
TRFID DataFile *
list of containers to store information about the involved ap-
plications of electronic document (see section 5.8.9). List ele-
ments are TRFID Application *
index of the current active application (see section 5.8.9)
list of containers to store information about the supported
procedures of authentication and secure data access within
the context of the session (see sections 5.8.3, 5.8.7). List ele-
ments are TRFID AccessControlInfo *
list of containers to store information about the detected
document security objects (see section 5.8.12). List elements

are TRFID_SecurityObject *

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021

167

6. SDK SOFTWARE TOOLS

Status — result of the last session operation (see section 5.8.2). One of
eRFID ErrorCodes values, coinsides with the return code
from the last _ExecuteCommand () call

XML-representation of the structure:

<RFID Session Data>

<VirtualMode> - boolean virtualMode value

<SDKVersion> - text SDKVersion valuein format'a.B' (e.g. "3.1")

<DriverVersion> - text DriverVersion value in format ‘A.B.C.D'
(e.g. "6.2.5.4™M)

<FirmwareVersion> - text FirmwareVersion value in format 'A.B'
(e.g. "5.19M)

<RFControlMode> — numeric REControlMode value in hexadecimal format
(e.g. "0x00000040™)

<CardProperties> - XML-representation of CardProperties field

<AntennaSetup> - not used since SDK version 3.5

<ExtLeSupport> - text representation of ExtLeSupport field in the format
"s1 [s2]", where S1 - code abbreviation,
S2 - numeric value in hexadecimal format
(e.g. "RFID Error NoError [0x00000001]")

<TotalBytesSent> - numeric TotalBytesSent value

<TotalBytesReceived> — numeric TotalBytesReceived value

<ProcessTime> — numeric ProcessTime value

<Session key> - XML-representation of Session key field

<Session terminal> - XML-representation of Session terminal field

<Session procedure> - text abbreviation of the value from Ses-

sion procedure field
<Session eSignPIN> - XML-representation of Session eSignPIN field

<VerifiedData> — XML-representation of vVerifiedData field
<RootFiles>
<RFID DataFile>

</RootFiles> - pRootFiles list contents
<Applications>
<RFID Application>

</Applications> - pApplications list contents
<AccessControls>
<RFID AccessControlInfo>

</AccessControls> - pAccessControls list contents
<SecurityObjects>
<RFID SecurityObject>

</SecurityObjects> — pSecurityObjects list contents

168 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

<Status>

- text representation of Status field in the format "s1
[s21", where ST —code abbreviation, S2 — numeric value

in hexadecimal format (e.g. "RFID Error NoError
[0x000000011M™)

</RFID Session Data>

6.3.67. TRFID_Application

TRFID Application structure is used to describe the contents of a single LDS applica-
tion and their analysis within the context of the communication session with electronic

document (see section 5.8).

struct TRFID_ Application

{
DWORD

DWORD
TRF _FT BYTES
TRF_FT BYTES
TRF _FT BYTES
TRFE _FT BYTES

nType;

Status;
ApplicationID;
Version;
UnicodeVersion;
DataHashAlgorithm;

TRFID Items List *pFiles;

}s

Declaration:
Fields:
nType

Status
ApplicationID
Version
UnicodeVersion

DataHashAlgorithm

pFiles

RFID.h

type of application of electronic document (one of
eRFID Application_Type values)

status of the application selection procedure (see section 5.8.9)
(one of eRFID _ErrorCodes values)

application identifier

application version

Unicode version for application

algorithm for calculating hash values for files for the proce-
dure of PA (see section 5.8.13)

list of containers to store information about the read files of
the application (see section 5.8.10). List elements are
TRFID DataFile *

For epPassport application the information on the application version and the Unicode
version is received during analysis of EF.COM data [2, section lll, § 14], for eID applica-
tion— EF.CardSecurity/EF.ChipSecurity data, containing the corresponding
eIDSecurityInfo ASN.1-object [24, part 3, §A.1.1.6].

XML-representation of the structure:

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 169

6. SDK SOFTWARE TOOLS

<RFID Application>
<Type>
<ApplicationID>

<Status>

<Version>

<UnicodeVersion>

<DataHashAlgorithm>

<Files>

<RFID DataFile>

</Files>
</RFID Application>

6.3.68. TRFID_DataFile

text abbreviation of the value from Type field

XML-representation of ApplicationID field in text
format. Each byte of ApplicationID represented by
its hexadecimal value. The individual bytes are separated
by spaces (e.g. "A0 00 00 02 47 10 01")

text representation of Status field in the format "s1
[S2]", where S1 — code abbreviation, S2 — numeric val-

ue in hexadecimal format (e.g.
"RFID Error NoError [0x00000001]")

text Version value (e.g. "0107")

text UnicodeVersion value (e.g. "040000")

- text DataHashAlgorithm value in the format "S1
(s2)", where S1 - algorithm name, S2 - algorithm
identifier (OID string).

pRootFiles list contents

TRFID DataFile structure is used to describe the contents of a single file of the LDS of
electronic document and the analysis of its contents within the context of the communica-
tion session with electronic document (see section 5.8).

struct TRFID DataFile
{
TRF _FT BYTES
DWORD
TRFID Application
TRF _FT BYTES
void
TREFID Items List
DWORD
DWORD
TRFID_ItemS_List
DWORD

TDocVisualExtendedInfo

TDocGraphicsInfo

FilelID;

nType;

*pApplication;
FileData;
*pParsedData;
*pParsingNotifications;
ReadingStatus;
nReadingTime;
*pNotifications;

PA Status;
*pDocFields Text;
*pDocFields Graphics;

TOriginalRFIDGraphicsInfo *pDocFields Originals;

}s

Declaration:
Fields:

RFID.h

170

Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

FilelID — file identifier

nType - type of the file (of the object) of data (one of
eRFID DataFile_Type values)

pApplication — reference to the object of the parent application. Contains an
element of TREFID _Session.pApplications

FileData — binary array of the file contents

pParsedData — pointer to the structure of logically parsed data (see sec-
tion 5.8.10)

pParsingNotifications — list of remarks arisen when making logical analysis of the data

contents. List elements are DWORD values, corresponding to the
constants from eLDS_ParsingNotificationCodes

ReadingStatus — status of the physical file reading (one of eRFID ErrorCodes
values)

nReadingTime — file reading time, ms

pNotifications — list of remarks arisen when reading data from the memory of

the chip and analysing their ASN.1-structure. List elements
are DWORD values, corresponding to the constants from the
elDS_ParsingErrorCodes

PA_Status — result of the data integrity verification within the context of
PA (see section 5.8.13)

pDocFields_Text — list of document text fields formed on the basis of the file
contents (see sections 5.8.10, 5.9)

pDocFields_Graphics — list of document graphic fields formed on the basis of the file
contents (see sections 5.8.10, 5.9)

pDocFields_Originals — list of the original binary representation of graphic document
fields formed on the basis of the file contents (see sections
5.8.10, 5.9)

XML-representation of the structure:
<RFID DataFile>

<Type> - text abbreviation of the value from Type field
<FileData> — XML-representation of FileData field

<ReadingStatus> — text representation of ReadingStatus field

<FileID> - XML-representation of FileID field in text format. Each

byte of FileID represented by its hexadecimal value. The
individual bytes are separated by spaces (e.g. "01 1E")

<ReadingTime> - numeric ReadingTime value
<ParsedData>
<ParsingNotifications>
<Item>

</ParsingNotifications>
</ParsedData> - pParsingNotifications list contents

<Notifications>
<Item>

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 171

6. SDK SOFTWARE TOOLS

</Notifications> - pNotifications list contents

<PA_ Status> — text representation of PA_Status field
<DocFields Text>
<Field>
</DocFields Text> - the list of abbreviations of types of the fields registered

inpDocFields Text
<DocFields Graphics>
<Field>

</DocFields Graphics> - the list of abbreviations of types of the fields regis-

tered in pDocFields Graphics
<DocFields Originals>
<Field>

</DocFields Originals> - the list of abbreviations of types of the fields regis-

tered in pDocFields Originals
</RFID DataFile>

ReadingStatus and PA Status elements are strings in the format "S1 [S2]", where
S1 - abbreviation of the corresponding status code, S2 — the numeric value in hexadeci-
mal format (e.g. "RFID Error NoError [0x00000001]").

Item elements of ParsingNotifications and Notifications lists are strings in
the format "s1 [sS2]", where ST — abbreviation of the corresponding notification code,
S2 — the numeric value in hexadecimal format (e.g.
"ntfLDS ICAO Certificate Validity [0x9000020C]").

6.3.69. TRFID AccessControlinfo

TRFID_AccessControlInfo structure is used to describe the results of a single authen-
tication procedure or a procedure of secure data access within the context of the commu-
nication session with electronic document (see sections 5.8).

struct TRFID AccessControllInfo
{

DWORD dwType;

DWORD Status;
TRFID_Items_List *pOptions;

int ActiveOptionIdx;
TRFID_Items_List *pNotifications;
void *pProcedure;
TRF_FT_BYTES SpecificDatal;
TRF_FT_BYTES SpecificData?2;

172 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

Declaration:
Field:
dwType -

Status -

pOptions -

ActiveOptionIdx -
pNotifications -

pProcedure -
SpecificDatal -
SpecificData2 -

RFID.h

procedure type (one of
eRFID AccessControl_ProcedureType Vvalues)
procedure status (RFID_Error_NotPerformed,

RFID Error NotAvailable, RFID Error NoError oOr
the error code from eRFID ErrorCodes)

list of containers to store information about the available var-
iants of the procedure (see sections 5.8.3, 5.8.7). List elements
are TRFID_AccessControl Option *

index of the active variant of the procedure (see section 5.8.7)

list of remarks arisen during the procedure. The elements of
the list are DWORD values, corresponding to the constants
from eLDS_ParsingErrorCodes

for internal SDK use

container for storage of procedure specific data

container for storage of procedure specific data

When performing TA in step-by-step mode on the second step in SpecificDatal
field of the procedure description object the contents of challenge is stored,
SpecificData?2 contains the contents of its hash value (see section 5.8.15).

SpecificDatal and SpecificData2 fields in the Rl procedure description object are used
to store the received terminal sector identifiers (see section 5.8.17).

XML-representation of the structure:

<RFID AccessControlInfo>

<Type>

<Status>
<Notifications>
<Item>

</Notifications>

— text abbreviation of the value from dwType field
— text representation of Status field

- pNotifications list contents

<AccessControlOptions>
<RFID AccessControl Option>

</AccessControlOptions> - pOptions list contents

<ActiveOptionIdx> - numeric ActiveOptionIdx value

<SectorIDl> — XML-representation of SpecificDatal field (for RI
procedure)

<SectorID2> — XML-representation of SpecificbData2 field (for RI
procedure)

<Challenge> — XML-representation of SpecificbDatal field (for TA
procedure)

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 173

6. SDK SOFTWARE TOOLS

<HashValue> - XML-representation of SpecificbData2 field (for TA

procedure)
</RFID AccessControlInfo>

Status element is a string in the format "s1 [s2]", where S1 — abbreviation of the sta-
tus code, S2 - the numeric value in hexadecimal format (e.g. "RFID Error NoError
[0x000000011").

Ttem elements of Notifications list are strings in the format "s1 [S2]", where S1 -
abbreviation of the corresponding notification code, S2 - the numeric value in hexadeci-
mal format (e.g. "ntfLDS CVCertificate Validity [0x91000202]").

6.3.70. TRFID_AccessControl_Option

TRFID AccessControl Option structure is used to describe a single variant of authentica-
tion or secure data access procedure performance within the context of the communication
session with electronic document (see section 5.8).

struct TRFID AccessControl Option
{
DWORD Version;
TRF _FT BYTES Scheme;
TRE FT BYTES KeyAlgorithm;

DWORD ChipIndividual;
};
Declaration: RFID.h
Fields:
Version — procedure version (for PACE, CA, TA)
Scheme — algorithm of used cryptographic scheme (CA, TA, AA), TA

public key algorithm (is specified after the procedure itself),
identifier if standardized public key domain parameters (for
PACE), URL (for Card Info)

KeyAlgorithm — public key algorithm (for PACE, CA, AA, RI), identifier of the
working CVCA-key (for TA), FID (for Card Info)
ChipIndividual — sign of the accessibility of key usage for privileged terminals

only (for CA) [24, §3.2.4, 8§A.1.2]. For informational Card Info
procedure low -order byte contains SFID.

XML-representation of the structure:
e for PACE (acptPACE) procedure
<RFID AccessControl Option>

<Version> — numeric Version value
<StdDomainParams> — text Scheme value

174 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

<KeyAlgorithm> - text KeyAlgorithm value
</RFID AccessControl Option>

StdDomainParams value is in the form "s1 [sS2]", where S1 - the name of a
standardized set of parameters, S2 - set identifier in hexadecimal.

KeyAlgorithm value is in the form "s1 (s2)", where S1 - algorithm name, S2 -
algorithm identifier (OID string).

o for CA (acptca), AA (acptA2) and Rl (acptRI) procedures

<RFID AccessControl Option>

<Version> - numeric Version value
<Scheme> - text Scheme value
<KeyAlgorithm> - text KeyAlgorithm value
<ChipIndividual> - boolean ChipIndividual value

</RFID AccessControl Option>

Scheme and KeyAlgorithm values are in the form "sS1 (s2)", where S1 - algo-
rithm name, S2 — algorithm identifier (OID string).

e for TA (acptTA) procedure

<RFID AccessControl Option>

<Version> — numeric Version value
<Scheme> — text Scheme value
<CAR> - text KeyAlgorithm value

</RFID AccessControl Option>

e for Card Info (acptCardInfo) informational procedure (see section 5.8.3)

<RFID AccessControl Option>

<URL> - text Scheme value
<FID> - text KeyAlgorithm value
<SFID> - hexadecimal value of the low-order byte of

ChipIndividual field
</RFID AccessControl Option>

6.3.71. TRFID_SecurityObject

TRFID_SecurityObject structure is used to describe the contents of a single document
security object (SO) and the results of its check within the context of the communication
session with electronic document (see section 5.8).

struct TRFID_SecurityObject
{

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 175

6. SDK SOFTWARE TOOLS

DWORD Version;

TRF_FT BYTES ObjectType;
TRFID DataFile *pFileReference;
TRFID Items List *pSignerInfos;
TREFID Items List *pNotifications;

}s

Declaration: RFID.h
Field:
Version — security object version (version of LDSSecurityObject

ASN.1-object for ePassport application [2, §A3.1])

ObjectType — security object identifier (OID from LDSSecurityObject

object for ePassport application [2, §A3.1],
szOID_BSI_SecurityObject for eID application)

pFileReference — reference to the source file of the security object data
pSignerInfos — list of containers to store information about digital signature

objects contained in the SO (see section 5.8.12). The ele-
ments of the list are TRFID_SignerInfo *

pNotifications — list of remarks arisen during the analysis of SO data structure.

XML-

The elements of the list are DWORD values, corresponding to
the constants from eLDS_ParsingErrorCodes

representation of the structure:

<RFID SecurityObject>

</

<Version> - numeric Version value

<ObjectType> - text value of ObjectType field in format "s1 (s2)",
where S1 - security object name, S2 - identifier (OID
string)

<FileReference> - text abbreviation of the file type from pFileReference
field

<SignerInfos>

<RFID SignerInfo Ex>

</SignerInfos> - pSignerInfos list contents

<Notifications>

<Item>
</Notifications> - pNotifications list contents
RFID SecurityObject>

Ttem elements of Notifications list are strings in the format "s1 [S2]", where S1 -
abbreviation of the corresponding notification code, S2 - the numeric value in a hexadec-
imal format.

176

Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

6.3.72. TRFID_Signerinfo_Ex

TRFID SignerInfo_Ex structure is used to describe the contents of a single copy of
digital signature of the document security object and the results of its check within the
context of the communication session with electronic document (see section 5.8.12). Cor-
responds to SignerInfo ASN.1-object [7, §5.3].

struct TRFID_SignerInfo_ Ex
{

DWORD Version;
TRFID DistinguishedName *pIssuer;
TRF _FT BYTES SerialNumber;
TRF FT BYTES SubjectKeyIdentifier;
TRF FT STRING DigestAlgorithm;
TRFID Items List *pSignedAttributes;
TRF _FT STRING SignatureAlgorithm;
TRE FT BYTES Signature;
TRFID Items List *pUnsignedAttributes;
DWORD PA Status;
TRFID Items List *pCertificateChain;
TRF_FT BYTES DataToHash;
TRFID Items List *pNotifications;
}i
Declaration: RFID.h
Fields:
Version — version of SignerInfo ASN.1 structure;
pIssuer — identifier of the necessary certificate issuer;
SerialNumber — serial number of the necessary certificate;
SubjectKeyIdentifier— signature object identifier of the necessary certificate;
DigestAlgorithm - hash algorithm identifier (OID) for digital signature genera-
tion;

pSignedAttributes — list of the signed attributes. Elements of the list are
TRFID Attribute Data *;
SignatureAlgorithm — digital signature algorithm identifier (OID);

Signature — binary data of the verified digital signature;

pUnsignedAttributes — list of the unsigned attributes. Elements of the list are
TRFID Attribute Data *;

PA_Status - result of the digital signature verification

(RFID_Error_NotPerformed, RFID Error NoError ambo
RFID Error_Failed),
pCertificateChain — certificate chain, used for the digital signature verification.
Elements of the list are TRFID Certificate Ex ¥*;
DataToHash - binary data array used to calculate the hash value for digital
signature verification;

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 177

6. SDK SOFTWARE TOOLS

pNotifications — list of remarks arisen during the analysis of the data
structure and performance of digital signature verifica-
tion. The elements of the list are DWORD values,
corresponding to the constants from
eLDS_ParsingErrorCodes.

XML-representation of the structure:

<RFID SignerInfo Ex>
<Version>
<Issuer>
<SerialNumber>
<SubjectKeyIdentifier>
<DigestAlgorithm>
<SignedAttributes>

< RFID Attribute Data>

</SignedAttributes>
<SignatureAlgorithm>
<Signature>
<PA Status>
<CertificateChain>

<RFID Certificate Ex>

</CertificateChain>

<DataToHash>

<Notifications>
<Item>

</Notifications>
</RFID SignerInfo Ex>

Values and format of nodes correspond to the fields of TRFID SignerInfo Ex. The number of
SignedAttributes elements corresponds to the number of elements in pSignedAttributes
array, the number of CertificateChain elements—to pCertificateChain array.

DigestAlgorithm and SignatureAlgorithm elements are strings in the format "s1
(S2)", where S1 - algorithm name, S2 - identifier (OID string).

PA Status is a string in the format "S1 [S2]", where S1 - status code abbreviation,
S2 — numeric value in a hexadecimal format.

Ttem elements of Notifications list are strings in the format "s1 [S2]" where ST — abbre-
viation of the corresponding notification code, S2 - the numeric value in a hexadecimal format.

6.3.73. TRFID Certificate Ex

TRFID Certificate Ex structure is used to describe the certificate contents used for
the digital signature verification of the document security object within the context of the

178 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

communication session with electronic document (see section 5.8.12). Corresponds to Cer-
tificate ASN.T-object [6, §4].

struct TRFID_Certificate_Ex

{
DWORD

TRF_FT BYTES
TRF_FT STRING

Version;
SerialNumber;
SignatureAlgorithm;

TRFID DistinguishedName *pIlssuer;

TRFID Validity

*pValidity;

TRFID DistinguishedName *pSubject;

TRF_FT STRING

TRFID Items List
TRFID Items List

SubjectPKAlgorithm;
*pExtensions;
*pNotifications;

DWORD Origin;

DWORD Type;

TRE _FT STRING FileName;

DWORD PA Status;

TRFID RevocationInfo *pRevocationInfo;
TRFID Certificate Ex *pIssuerCertificate;

}s

Declaration:

Fields:

Version
SerialNumber
SignatureAlgorithm
pIssuer

pvalidity

pSubject
SubjectPKAlgorithm
pExtensions

pNotifications

Origin

Type
FileName

PA Status

RFID.h

version of Certificate ASN.1 structure;

certificate serial number;

certificate digital signature algorithm identifier (OID);

identifier of the certificate issuer;

certificate validity period;

identifier of the signature subject;

certificate public key algorithm identifier (OID);

list of the certificate extensions. Elements of the list are
TRFID_PKI Extension *;

list of remarks arisen during the analysis of the certificate data
structure and its validity verification. The elements of the list
are DWORD values, corresponding to the constants from
elDS_ParsingErrorCodes;

certificate origin (one of eRFID _CertificateOrigin
values);

certificate type (one of eRFID CertificateType values);
the name of the certificate source file, if there is one
(UTF8 string);

result of certificate's digital signature verification
(RFID_Error_NotPerformed, RFID_Error NoError
nmbo

RFID Error Session PA SignatureCheckFailed),

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 179

6. SDK SOFTWARE TOOLS

pRevocationInfo — reference to the object with certificate revocation information.
If not revoked, contains 0;

pIssuerCertificate — reference to the parent certificate. Possible reference to it-
self in the case of a self-signed certificate.

XML-representation of the structure:

<RFID Certificate Ex>
<Origin>
<Type>
<FileName>
<PA Status>
<Version>
<SerialNumber>
<SignatureAlgorithm>
<Issuer>
<Validity>
<Subject>
<SubjectPKAlgorithm>
<Extensions>

<RFID PKI Extension>

</Extensions>
<Notifications>
<Item>

</Notifications>
</RFID_Certificate_Ex>

Values and format of nodes correspond to the fields of TRFID Certificate_Ex. The
number of Extensions elements corresponds to the number of elements in pExten-
sions array.

Origin and Type elements contain text abbreviations of the values of the corresponding
fileds.

SignatureAlgorithm and SubjectPKAlgorithm values are strings in the format
"S1 (S2)", where S1 - algorithm name, S2 - identifier (OID string).

PA Status is a string in the format "S1 [S2]", where S1 - status code abbreviation,
S2 — numeric value in a hexadecimal format.

Ttem elements of Notifications list are strings in the format "s1 [S2]", where S1 -
abbreviation of the corresponding notification code, S2 - the numeric value in a hexadec-
imal format.

180 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

6.3.74. TRFID Items List

TRFID Items_List is used to describe the list of any elements.

struct TRFID_Items_List

{
DWORD dwCount;

void **pIltems;
bi
Declaration: RFID.h
Fields:
dwCount — number of pItems array elements
pltems — array of pointers to the structures

The specific type of list elements is defined by the context of the object.

6.3.75. TRFID_DistinguishedName

TRFID DistinguishedName structure contains information that serves as the distin-
guished name (identifier) of an object. Corresponds to Name ASN.1-object [X.501][6,
§4.1.2.4].

struct TRFID_DistinguishedName
{
TRF_FT BYTES Data;
TRF _FT STRING FriendlyName;
TRFID Items List *pAttributes;
bi

Declaration: RFID.h

Fields:

Data — contents of the identifier in binary form;

FriendlyName - textrepresentation of the identifier (UTF8);

pAttributes - list of individual attributes contained in the identifier. The elements of

the list are TRFID Attribute Name *.

In XML-structures appears as a separate node, named based on the context of use, and
contains the following elements:

<node name>
<Data>
<FriendlyName>
<Attributes>
<RFID Attribute Name>

</Extensions>
</node name>

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 181

6. SDK SOFTWARE TOOLS

Values and format of nodes correspond to the fields of TRFID DistinguishedName
structure. The number of Attributes elements corresponds to the number of ele-
ments in pAttributes array.

6.3.76. TRFID_Attribute_Name

TRFID Attribute_Name contains the data of one attribute which is part of the distinguished
name. Corresponds to AttributeTypeAndValue ASN.1-object [X.501][6, §4.1.2.4].

struct TRFID Attribute Name
{

TRE FT STRING Type;
TRF _FT STRING Value;
i
Declaration: RFID.h
Fields:
Type — attribute identifier (OID ASCII string);
Value — text value of the attribute (UTF8).

XML-representation of the structure:
<RFID Attribute Name>

<Type> — contents of the identifier in the format "s1 (s2)", where S1 - at-
tribute name, S2 - identifier (OID string);
<Value> - textvalue of value field

</RFID Attribute Name>

6.3.77. TRFID Attribute Data

TRFID Attribute_Data structure contains the data of one attribute of the digital signa-
ture object. Corresponds to Attribute ASN.1-object [7, §5.3].

struct TRFID_Attribute Data
{

TRF FT STRING Type;
TRF FT BYTES Data;
void *pParsedData;
i
Declaration: RFID.h
Fields:
Type — attribute identifier (OID ASCII string);
Data — attribute binary data;
pParsedData - reserved.

XML-representation of the structure:

182 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

<RFID Attribute Data>

<Type> — contents of the identifier in the format "s1 (s2)", where S1 - at-
tribute name, S2 - identifier (OID string);
<Data> — contents of Data field

</RFID Attribute Data>

6.3.78. TRFID_Validity

TRFID Validity structure contains information on a certificate validity. Corresponds to
Validity ASN.1-object [6, §4.1].

struct TRFID Validity
{

TRF FT STRING NotBefore;
TRF_FT_ STRING NotAfter;
bi
Declaration: RFID.h
Fields:
NotBefore — string of the start date;
NotAfter — string of the expiration date.

The format of the strings is defined by [6, §4.1.2.5] and can be YYMMDDHHMMSSZ (in the
case of using UTCTime format) or YYYYMMDDHHMMSSZ (in the case of GeneralizedTime
format).

In XML-structures appears as a separate node, named based on the context of use, and
contains the following elements:

<node name>
<NotBefore>
<NotAfter>

</node name>

Values and format of nodes correspond to the fields of TRFID Validity structure.

6.3.79. TRFID PKI Extension

TRFID PKI Extension structure contains the data of a certificate extension. Corre-
sponds to Extension ASN.1-object [6, 8§4.1].

struct TRFID_PKI_Extension
{

TRF_FT STRING Type;
TRF _FT BYTES Data;
void *pParsedData;

}s

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 183

6. SDK SOFTWARE TOOLS

Declaration: RFID.h

Fields:

Type — extension identifier (OID ASCII string);
Data — extension binary data;
pParsedData - reserved.

XML-representation of the structure:
<RFID PKI Extension>

<Type> — contents of the identifier in the format "s1 (s2)", where S1 - at-
tribute name, S2 - identifier (OID string);
<Data> — contents of Data field

</RFID PKI Extension>

6.3.80. TRFID Revocationinfo

TRFID RevocationInfo structure contains the information on the certificate revocation.
Corresponds to the element of the list of revoked certificates TBSCertList ASN.1-object
[6, §5.1].

struct TRFID_RevocationInfo

{

TRFID CRL Ex *pOwner;
TRE _FT BYTES Certificate;
TRE _FT STRING RevocationDate;

TRFID Items List *pEntryExtensions;
b

Declaration: RFID.h

Fields:

pOwner - reference to the parent Certificate Revocation List (CRL) ob-
ject;

Certificate - revoked certificate serial number;

RevocationDate - certificate revocation date;

pEntryExtensions - extensions list of CRL. Elements of the list are

TRFID PKI_Extension *.

The format of the string RevocationDate is defined by [6, §4.1.2.5] and can be
YYMMDDHHMMSSZ (in the case of using UTCTime format) or YYYYMMDDHHMMSSZ (in the
case of GeneralizedTime format).

XML-representation of the structure:

<RFID RevocationInfo>
<CertificateSerialNumber>
<RevocationDate>
<EntryExtensions>
<RFID PKI Extension>

184 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

</EntryExtensions>

<Owner CRL>

</RFID_RevocationInfo>

Values and format of nodes correspond to the fields of TRFID_RevocationInfo struc-
ture. The number of Extensions elements corresponds to the number of elements in

pExtensions array.

6.3.81. TRFID_CRL_Ex

TRFID CRL_Ex structure is used to describe the contents of the certificate revocation list
(CRL). Corresponds to TBSCertList ASN.T-object [6, §5].

struct TRFID CRL Ex
{

DWORD

TRF_FT_ STRING

Version;
SignatureAlgorithm;

TRFID DistinguishedName *plIssuer;

TRE_FT STRING
TRE_FT STRING
TRFID Items List
TRFID Items List
TRFID Items List
TRE_FT STRING
DWORD

TRFID Certificate

}s

Declaration:

Fields:

Version -
SignatureAlgorithm —
pIssuer -
ThisUpdate -
NextUpdate -
pExtensions -

pRevokedCertificates

pNotifications -

FileName
PA Status

ThisUpdate;
NextUpdate;
*pExtensions;
*pRevokedCertificates;
*pNotifications;
FileName;
PA Status;

Ex *pIssuerCertificate;

RFID.h

version of TBSCertList ASN.1 structure;

CRL digital signature algorithm identifier (OID);

CRL issuer identifier;

CRL issue date;

next CRL release date;

extensions list of CRL. Elements of the list are
TRFID_PKI Extension *;

— list of the revoked certificates. Elements of the list are
TRFID RevocationInfo *;

list of remarks arisen during the analysis of the data struc-
ture of the CRL and performance of its digital signature
verification. The elements of the list are DWORD
values, corresponding to the constants from
eLDS_ParsingErrorCodes

the name of the CRL source file, if there is one (UTF8 string);
result ~of CRL's digital signature verification
(RFID_Error_NotPerformed, RFID_Error NoError

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 185

6. SDK SOFTWARE TOOLS

nmbo
RFID Error Session PA SignatureCheckFailed);
pIssuerCertificate — reference to the parent certificate.

XML-representation of the structure:

<RFID CRL Ex>
<FileName>
<PA Status>
<Version>
<SignatureAlgorithm>
<Issuer>
<ThisUpdate>
<NextUpdate>
<Extensions>

<RFID PKI Extension>

</Extensions>
<RevokedCertificates>
<RFID RevocationInfo>

</RevokedCertificates>
<Notifications>
<Item>

</Notifications>
</ RFID CRL Ex>

Values and format of nodes correspond to the fields of TREID CRL Ex structure. The number of
Extensions elements corresponds to the number of elements in pExtensions array, the num-
ber of RevokedCertificates elements—to pRevokedCertificates array.

SignatureAlgorithm element is a string in the format "s1 (s2)", where S1 - algo-
rithm name, S2 - identifier (OID string).

PA Status is a string in the format "S1 [S2]", where S1 - status code abbreviation,
S2 - numeric value in a hexadecimal format.

Item elements of Notifications list are strings in the format "S1 [S2]1", where ST — abbre-
viation of the corresponding notification code, S2 — the numeric value in a hexadecimal format.

6.3.82. TRFID_AccessKey

TRFID AccessKey structure is used to describe the contents of secure data access key within
the context of the communication session with electronic document (see section 5.8.6).

struct TRFID_AccessKey
{

186 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

DWORD accessType;
DWORD keyType;
TRE FT BYTES AccessKey;
union

{
DWORD CheckFullKeyMatching;

DWORD eSignPIN Index;
bi
bi

Declaration: RFID.h
Fields:
accessType — type of secure data access procedure, for which the key is

provided (one of eRFID_AccessControl_ProcedureType
values — acptBAC or acptPACE)

keyType — key type (one of eRFID_Password_Type values)
AccessKey - key contents
CheckFullKeyMatching — logical sign of the need for a full comparison of AccessKey

contents with the contents of DG1 (MRZ) data group
eSignPIN_ Index — used eSign-PIN identifier

For the key of ppt PIN eSign type the contents of accessType are ignored.

XML-representation of the structure:

<Session_ key>

<AccessType> — text abbreviation of accessType value
<KeyType> — text abbreviation of keyType value
<AccessKey> - text AccessKey value

<CheckFullKeyMatching> — boolean CheckFullKeyMatching value
</Session_ key>

6.3.83. TRFID Terminal

TRFID_Terminal structure is used to describe the terminal type within the context of the
communication session with electronic document (see section 5.8.4).

struct TRFID_Ierminal
{

DWORD TermType;
DWORD AuthReq;
DWORD AuthReqg?2;
TRF _FT BYTES TermCert Data;
char *TermCert FileName;
}i
Declaration: RFID.h

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 187

6. SDK SOFTWARE TOOLS

Fields:
TermType — terminal type (one of eRFID_TerminalType values)
AuthReq — declared (set) combination of flags of access rights to the

functionality of the document (combination of
eRFID TerminalAuthorizationRequirement values)
AuthReg2 — declared (set) combination of flags of access rights to the
functionality of the document (combination of
eRFID TerminalAuthorizationRequirement values)
TermCert_Data — terminal certificate binary data
terminal certificate full file name (in UTF8 format)

TermCert _FileName

The following values from eRFID _TerminalAuthorizationRequirement are used in
the context of AuthReqg?2 field:

tar AT Func InstallQCert

tar AT Func InstallCert

tar AT Func PINManagement

tar AT Func CAN Allowed

tar AT Func PrivilegedTerminal
tar AT Func RestrictedIdent
tar AT Func Verify CommunityID
tar AT Func Verify Age

tar AT Func Full

All the remaining values are used in the context of AuthReq field.

XML-representation of the structure:

<Session_ terminal>

<TermType> — text abbreviation of TermType value

<AuthReqg> - AuthReq value in a hexadecimal format
(e.g. "0x00000003")

<AuthReqg2> - AuthReg2 value in a hexadecimal format

(e.g. "0x00000000")
</Session terminal>

6.3.84. TRFID_eSignKeyParameters

TRFID eSignKeyParameters structure is used to identify the cryptographic key of
eSign application within the context of the communication session with electronic docu-
ment (see section 5.8.21).

struct TRFID eSignKeyParameters

{
BYTE key Id;

}i

188 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

Declaration: RFID.h
Fields:
key_Id — identifier of cryptographic key pair of eSign application.

6.3.85. TRFID_eSignPINParameters

TRFID eSignPINParameters structure is used to describe eSign-PIN parameters within
the context of the communication session with electronic document (see section 5.8.20).

struct TRFID_eSignPINParameters

{
BYTE PIN Id;
char *PIN new;

}s

Declaration: RFID.h

Fields:

PIN_Id — eSign-PIN identifier

PIN_new — new value of eSign-PIN (for commands of change and crea-

tion of the key)

6.3.86. TRFID_ApplicationID

TRFID ApplicationID structure is used to store the application identifier and to
use it within the context of the communication session with electronic document (see
section 5.8.9).

struct TRFID ApplicationID
{

DWORD id length;

BYTE id[287];
}i

Declaration: RFID.h

Field:

id_length — id identifier length
id — application identifier

6.3.87. TRFID_FilelD

TRFID FileID structure is used to store the file identifier and to use it within the context
of the communication session with electronic document (see sections 5.7.4, 5.8.10).

struct TRFID FilelID
{
BYTE *pID;
DWORD nLength;

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 189

6. SDK SOFTWARE TOOLS

DWORD 1d type;

DWORD SM protected;

DWORD FixedLength;
}i

Declaration: RFID.h

Fields:

pID — binary array of the file identifier contents

nLength — pID array length

id_type — file identifier type (one of eRFID_FileID_Type values)

SM_protected — sign that access to the file should be performed through
a SM-channel

FixedLength — fixed file length if it is known in advance or reading of specif-

ic number of bytes is required (0 — file length is defined au-
tomatically by the length of the header tag of its ASN.1 con-
tents)

6.3.88. TRFID FilesList

TRFID FilesList structure is used to store a list of file identifiers (see section 5.7.4).

struct TRFID_FilesList

{
TRFID FileID files[32];

DWORD N;
i
Declaration: RFID.h
Field:
files — array of file identifiers
N — number of £iles significant elements

6.3.89. TRFID_FileUpdateData

TRFID FileUpdateData structure is used to store the identifier and the new contents of the
file for the file updating operation (see section 5.8.19).

struct TRFID_ FileUpdateData

{
TRFID FilelID FileID;

TCustomRawData Data;

}i

Declaration: RFID.h
Field:
FileID — file identifier

190 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

Data — new file contents

6.3.90. TRFID AccessControl Params

TRFID AccessControl_Params structure is used to transfer the parameters of authenti-
cation or secure file access procedure within the context of the communication session
with electronic document (see section 5.8.7).

struct TRFID_AccessControl_Params

{
DWORD ac Type;

void *ac Params;
}s
Declaration: RFID.h
Fields:
ac_Type — type of procedure (one of
eRFID AccessControl_ProcedureType values)
ac_Params — procedure parameters

6.3.91. TTerminalAuthenticationStepData

TTerminalAuthenticationStepData procedure is used to define the parameters of
another step of terminal authentication procedure when performing it in step-by-step
mode (see section 5.8.15).

struct TTerminalAuthenticationStepData
{
DWORD step;
char CAR[32];
TRF_FT BYTES CVCA Link Certificate;
TRF_FT BYTES DV Certificate
TRE _FT BYTES IS Certificate;
TRF_FT BYTES IS PrivateKey;
TRF FT BYTES Challenge;
TREF_FT BYTES Signature;
}i

Declaration: RFID.h

Fields:

step — procedure step identifier (1 and 2 values are allowed)
CAR — required CVCA-key identifier (CAR)

CVCA_Link Certificate - user-defined CVCA-link certificate

DV _Certificate — user-defined DV-certificate

IS Certificate — user-defined terminal certificate

IS_PrivateKey — private key corresponding to the terminal certificate

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 191

6. SDK SOFTWARE TOOLS

Challenge — data to be signed or its hash value (data type specified in
Challenge.nType - one of the wvalue from
eRFID TerminalAuthenticationToSignDataType),

Signature — digital signature for transfer to the RFID-chip

6.3.92. TTerminalVerificationData

TTerminalVerificationData structure is used to store information about verified
auxiliary data within the context of TA (see section 5.8.18).

struct TTerminalVerificationData

{
TREF FT BYTES DateOfExpiry;
TRF_FT_BYTES DateOfBirth;
TRF _FT BYTES CommunityID;

}i

Declaration: RFID.h

Fields:

DateOfExpiry — date of document expiry

DateOfBirth — date of birth

CommunityID — binary array of Community ID contents

XML-representation of the structure:

<VerifiedData>
<DateOfExpiry>
<Value>
<Status>
</DateOfExpiry>
<DateOfBirth>
<Value>
<Status>
</DateOfBirth>
<CommunityID>
<Value>
<Status>
</CommunityID>
</VerifiedData>

The value of DateOfExpiry and DateOfBirth elements represented as text content of
the corresponding structure fields.

The value of CommunityID element is a string. Each byte of CommunityID represented
by its hexadecimal value. The individual bytes are separated by spaces
(e.g. "A0 00 00 02 47 10 0O1™)

192 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

Status element is a string in the format "S1 [S2]", where S1 - status code abbrevia-
tion (nType value of the corresponding structure element), S2 — numeric value in a hexa-
decimal format.

6.3.93. TPACE_SetupParams

TPACE_SetupParams structure is used to define parameters of PACE procedure within
the context of the communication session with electronic document (see section 5.8.8).

struct TPACE_ SetupParams
{
DWORD nOptionIdx;
BOOL skipCHAT;
bi

Declaration: RFID.h

Fields:

nOptionIdx — index of procedure variant

skipCHAT — sign to transmit CHAT when initializing the procedure

6.3.94. TCA_SetupParams

TCA_SetupParams structure is used to define parameters of CA procedure within the
context of the communication session with electronic document (see section 5.8.14).

struct TCA_SetupParams

{

DWORD nOptionIdx;

BOOL TA preliminary step;
I

Declaration: RFID.h

Fields:

nOptionIdx — index of procedure variant

TA_preliminary_step - indication of TA preliminary phase performance (true or
false)

6.3.95. TTA_SetupParams

TTA_SetupParams structure is used to define parameters of TA procedure within the

frames of the current communication session with electronic document (see section
5.8.15).

struct TTA_SetupParams
{

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 193

6. SDK SOFTWARE TOOLS

DWORD nOptionIdx;
DWORD ProcessType;
TTerminalAuthenticationStepData TA StepData;

TTerminalVerificationData VerificationData;

i

Declaration: RFID.h

Fields:

nOptionIdx — index of procedure variant

ProcessType — order of procedure performance (one of
eRFID TerminalAuthenticationType values)

TA_StepData — configuration of the next TA step when working in step-by-
step mode without using the callback-function

VerificationData — contents of the auxiliary data for the following verification

(see section 4.10.2)

6.3.96. TPA Params

TPA_Params structure is used to define parameters of passive authentication (SO verifica-
tion) within the frames of the current communication session with electronic document
(see section 5.8.12).

struct TPA_ Params
{
DWORD SO Index;
DWORD SI Index;
TRF FT BYTES CSCA_Certificate;
TRF_FT BYTES DS Certificate;
}i

Declaration: RFID.h

Fields:

SO_Index — index of the verified SO

SO_Index — index of the verified digital signature
CSCA_Certificate — user-defined CSCA-certificate

DS_Certificate — user-defined DS-certificate

6.3.97. TRI_SetupParams

TRI_SetupParams structure is used to define parameters of Rl procedure within the frames
of the current communication session with electronic document (see section 5.8.17).

struct TRI_SetupParams

{
DWORD nOptionIdx;
TRE FT BYTES SectorKeyl;

194 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

char
TRF _FT BYTES
char

i

Declaration:

Field:

nOptionIdx
SectorKeyl
SectorKeyl_FileName
SectorKey?2
SectorKey2_FileName

*SectorKeyl FileName;
SectorKey2;
*SectorKey2 FileName;

RFID.h

index of procedure variant
data of the public key 1

data of the public key 2

6.3.98. TRF_EDL_DG1

TRF_EDL_DG1 structure is used to store the contents of informational EF.DG1 data group

of eDL application
ries/restrictions/conditio

struct TRF_EDL DGl

— mandatory demographic data

ns [39].

{

}s

BYTE
TRF_FT STRING
TRF_FT STRING
TRF_FT STRING
TRF_FT STRING
TRF_FT STRING
TRF_FT STRING
TRF_FT STRING
TRF_FT STRING
TRF_FT STRING
TRF_FT STRING
TRF_FT STRING
TRF_FT STRING
TRF_FT STRING
BYTE

TRF_FT BYTES

nType;
Surname;
GivenNames;
DateOfBirth;
PlaceOfBirth;
Nationality;
Gender;
IssuingCountry;
DateOfIssue;
DateOfExpiry;
IssuingAuthority;
AdminNumber;
DocumentNumber;
Address;
nVRCRecords;
**pVRCContents;

and

full file name of the public key 1 (in UTF8 format)

full file name of the public key 2 (in UTF8 format)

vehicle catego-

Declaration: RFID.h

Fields:

nType — type of informational data group; always contains
RFDGT_EDL_DG1 value from
eRFID DataGroupTypeTag enumeration;

Surname — surname(s) of the holder;

GivenNames — other name(s) of the holder;

DateOfBirth — date of birth;

PlaceOfBirth — place of birth;

Nationality — nationality;

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 195

6. SDK SOFTWARE TOOLS

Gender
IssuingCountry
DateOfIssue
DateOfExpiry
IssuingAuthority
AdminNumber
DocumentNumber
Address
nVRCRecords
pVRCContents

gender;

issuing state;

date of issue of the licence;

date of expiry of the licence;

issuing authority;

administrative number (other than document number);
document number;

permanent place of residence or postal address;

number of pvRCContents elements;

array of textual vehicle catego-
ries/restrictions/conditions elements.

XML-representation of the structure:

<eDL DG1>
<Type>
<Surname>
<GivenNames>
<DateOfBirth>
<PlaceOfBirth>
<Nationality>
<Gender>

<IssuingCountry>

<DateOfIssue>
<DateOfExpiry>

<IssuingAuthority>

<AdminNumber>

<DocumentNumber>

<Address>
<VRCContents>
<VRCRecord>

</VRCContents>
</eDL_DG1>

Values and format of nodes correspond to the fields of TRF_EDL_DG1 structure.

6.3.99. TRFChipProperties

TRFChipProperties structure is used to store information about the characteristics of
the RFID-chip located in the scope of the reader (see sections 5.7.1, 5.8.3) [18, 19]. Available
when working with readers with firmware version 21.00 and higher.

struct TRFChipProperties

{
BYTE Type;

BYTE Support 4;

BYTE Support DS;
BYTE Support DR;

BYTE Actual DS;

196

Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

RFID.h

type of the RFID-chip by the connection physical parameters (one of
eRFID_Type constants);
sign of support for ISO/IEC 14443-4 data exchange protocol — true

combination of eRFID_BaudRate flags, defining the data transmit-
ting rates supported by the RFID-chip;

combination of eRFID_BaudRate flags, defining the data receiving
rates supported by the RFID-chip;

eRFID BaudRate value, indicating the established rate for data
transmitting to the RFID-chip;

eRFID _BaudRate value, indicating the established rate for data re-
ceiving from the RFID-chip;

size of RFID-chip's receiving buffer for one operation of data transfer
(in bytes) (Frame Size Card);

indicator of the minimum time of RFID-chip readiness to receive data
from the reader after the end of its own data transmission (Start-up
Frame Guard Time indicator);

sign of NAD support- true wnu false;

sign of CID support — true wam false;

indicator of the maximum waiting time for the arrival of data from
RFID chip in response to the command sent (Frame Waiting Time in-

maximum size of type-B RFID-chip data receiving buffer (in bytes)
(Maximum Buffer Length);

length of UID field;

unique chip identifier;

length of HBytes field;

historical bytes from the response of type-A RFID-chip to RATS
command of ISO/IEC 14443-3 protocol;

length of ATR field;

BYTE Actual DR;
WORD FSC;
BYTE SEFGI;
BYTE NAD;
BYTE CID;
BYTE FWT;
DWORD MBL;
BYTE SizeUID;
BYTE UID[10];
BYTE SizeHBytes;
BYTE HBytes[16];
BYTE SizeATR;
BYTE ATR[36];
BYTE Support Mifare;
BYTE SAK;
}i
Declaration:
Fields:
Type
Support_4
or false;
Support_DS
Support_DR
Actual_DS
Actual_DR
FSC
SFGI
NAD
CID
FWI
dicator);
MBL
SizeUID
UID
SizeHBytes
HBytes
SizeATR
ATR

ATR string of the chip;

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 197

6. SDK SOFTWARE TOOLS

Support_Mifare — sign of support for ISO/IEC 14443-3 data exchange protocol
(MIFARE® Classic Protocol) — true or false;

— response of type-A RFID-chip to SELECT command of ISO/IEC 14443-
3 protocol (Select Acknowledge, SAK).

SAK

XML-representation of the structure:

<CardProperties2>

<Type>
<Support 4>
<Support DS>

<Support DR>
<Actual DS>
<Actual DR>

<FSC>
<SFGI>

<NAD>
<CID>
<FWI>

<MBL>
<UID>

<HBytes>

<ATR>

<Support Mifare>
<SAK>

</CardProperties2>

text abbreviation of Type value
logical Support 4 value

numeric Support DS value in hexadecimal format (e.g.
"OXOF")

numeric Support DR value in hexadecimal format (e.g.
HOXOFH)

numeric Actual DS value in hexadecimal format (e.g.
HOXOFH)

numeric Actual DR value in hexadecimal format (e.g.
"OXOF")

numeric FSC value

numeric SFGI value in hexadecimal format (e.g.
HOXOlH)

logical NAD value
logical CID value

numeric FWI value in hexadecimal format (e.g.
"OXO8")

numeric MBL value

UID contents in text format. Each byte is represented by
its hexadecimal value. The individual bytes are separated
by spaces (e.g. "F9 4F 41 60")

HBytes contents in text format. Each byte is represented
by its hexadecimal value. The individual bytes are sepa-

rated by spaces (e.g. "80 91 E1 31 D8 65 B2 8C
01 01 OE 73 C4 41 EO")

ATR contents in text format. Each byte is represented by
its hexadecimal value. The individual bytes are separated

by spaces (e.g. "3B 8F 80 01 80 91 E1 31 D8
65 B2 8C 01 01 OE 73 C4 41 EO 54")

logical Support Mifare value

numeric SAK value in hexadecimal format (e.g.
"OXOO")

198

Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 199

6. SDK SOFTWARE TOOLS

6.4. ENUMERATIONS

6.4.1.eRFID_ResultType

eRFID ResultType enumeration contains a set of constants specifying the type of data
stored in TResultContainer container structure (see section 6.3.2).

enum eRFID ResultType
{

RFID ResultType Empty = 0,

RFID ResultType RFID RawData = 101,
RFID ResultType RFID TextData = 102,
RFID ResultType RFID ImageData = 103,

RFID ResultType RFID BinaryData = 104,
RFID ResultType RFID OriginalGraphics= 105,
}i

6.4.2.eRFID_DataGroups

eRFID_DataGroups enumeration contains a set of constants specifying the information-
al data groups, the contents of which needs to be obtained when executing the reading
command when working in batch mode (see section 5.7.4).

enum eRFID DataGroups

{

REFDG DG1 = 0x00000001,
RFDG DG2 = 0x00000002,
REDG DG3 = 0x00000004,
REDG DG4 = 0x00000008,
REDG_DG5 = 0x00000010,
REFDG_DG6 = 0x00000020,
REDG_DG7 = 0x00000040,
RFDG_DGS8 = 0x00000080,
REFDG_DG9 = 0x00000100,
RFDG DG10 = 0x00000200,
RFDG DG11 = 0x00000400,
REFDG DG12 = 0x00000800,
RFDG DG13 = 0x00001000,
RFDG DG14 = 0x00002000,
REFDG DG15 = 0x00004000,
RFDG DGlo = 0x00008000,
REDG_SOD = 0x00010000,
RFDG USER = 0x00100000,

RFDG_DG All = Oxffffffff,
}i

Constants correspond to the informational data groups of ePassport application, as well as:

RFDG_USER — user-defined files from the list assigned by
RFID Command SetUserDefinedFilesToRead command;
RFDG_DG_ALL — combination of all available data groups.

200 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

6.4.3.eRFID_DataGroupTypeTag

eRFID DataGroupTypeTag enumeration contains a set of constants specifying the iden-
tifiers (ASN.1-tags) of the informational data groups.

enum eRFID DataGroupTypeTag
{

REDGT COM = 0x60,
REDGT DGl = 0x61,
REDGT_DG2 = 0x75,
REDGT DG3 = 0x63,
REDGT DG4 = 0x76,
REDGT DG5 = 0x65,
RFDGT_DG6 = 0x66,
RFDGT_DG7 = 0x67,
RFDGT_DG8 = 0x68,
RFDGT_DG9 = 0x69,
RFDGT_DG10 = 0x6A,
RFDGT_DG11 = 0x6B,
REDGT DG12 = 0x6C,
RFDGT DG13 = 0x6D,
REDGT DG14 = 0x6E,
RFDGT DG15 = 0x6F,
REDGT_DG16 = 0x70,
REDGT _SOD = 0x77,
RFDGT_EID DGl = 0x61,
RFDGT_EID DG2 = 0x62,
RFDGT_EID DG3 = 0x63,
RFDGT_EID DG4 = 0x64,
RFDGT_EID DG5 = 0x65,
REDGT EID DG6 = 0x66,
REDGT _EID DG7 = 0x67,
RFDGT EID DG8 = 0x68,
RFDGT EID DG9 = 0x69,
RFDGT EID DG10 = O0x6A,
RFDGT EID DGll = 0x6B,
RFDGT EID DG12 = 0x6C,
RFDGT EID DG13 = 0x6D,
REDGT _EID DGl4 = Ox6E,
REDGT _EID DGl5 = O0x6F,
REDGT _EID DGl6 = 0x70,
RFDGT_EID DG17 = 0x71,
REDGT EID DGl8 = 0x72,
REDGT _EID DGl9 = 0x73,
RFDGT EID DG20 = 0x74,
RFDGT _EID DG21 = 0x75,
RFDGT EDL COM = 0x60,
RFDGT _EDL SOD = 0x77,
RFDGT EDL CE = 0x53,
RFDGT EDL DGl = 0x61,
RFDGT EDL DG2 = 0x6B,
RFDGT_EDL DG3 = 0x6C,
REDGT _EDL DG4 = 0x65,
REDGT_EDL DG5 = 0x67,
REDGT _EDL DG6 = 0x75,
REDGT _EDL DG7 = 0x63,

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 201

6. SDK SOFTWARE TOOLS

RFDGT_EDL DG8 = 0x76,
REDGT_EDL_DG9 0x70,
RFDGT_EDL DG1l = 0x6D,
RFDGT_EDL DG12 = 0x71,
RFDGT_EDL DG13 = O0x6F,
RFDGT_EDL DG14 = O0x6E,

}i

Constants with prefix REDGT_ correspond to the informational data groups of ePassport
application, with prefix REDGT_EID_ — those of eTD application,, with prefix REDGT_EDL_ —
eDL application.

6.4.4.eRFID_Type

eRFID_Type enumeration contains a set of constants specifying the type of the RFID-chip
by the physical parameters of connection between antennas of the chip and the reader
(see section 6.3.13).

enum eRFID_ Type
{

rftTypeUnknown = 0,
rftTypeA =1,
rftTypeB = 2,

b

Value of constants of RFID-chip type:

rftTypeUnknown — unknown;
rftTypeA - type «A»;
rftTypeB - type «B».

6.4.5.eRFID A Chip

eRFID_A_Chip enumeration contains a set of constants specifying the type of the RFID-
chip from MIFARE® family (for chips of type «A») (see section 6.3.13).

enum eRFID A Chip
{

rfacUnknown = 0,
rfacMifarelK =1,
rfacMifaredK = 2,
rfacMifareUltralight = 3,
rfacMifareDESFire = 4,
rfacMifareProX = 5,

}:

Value of chip type constants:

rfacUnknown — unknown;

rfacMifarelK -~ MIFARE® 1K;

rfacMifare4K -~ MIFARE® 4K;

rfacMifareUltralight - hMFARE®lﬂUatht

202 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

rfacMifareDESFire - MIFARE® DESFire;
rfacMifareProX — MIFARE® ProX or SmartMX xD(T).

6.4.6.eRFID BaudRate

eRFID_BaudRate enumeration contains a set of constants specifying the rate of data ex-
change between the reader and the RFID-chip (see section 6.3.13).

enum eRFID_BaudRate

{
rfbr 106 = 0x01,

rfbr 212 = 0x02,
rfbr 424 = 0x04,
rfbr 848 = 0x08,

}s

Value of constants of data exchange rate:

rfbr 106 - 106 bits/s;
rfbr 212 - 212 bits/s;
rfbr 424 — 424 bits/s,
rfbr 848 — 848 bits/s.

6.4.7.eCBEFF_Gender

eCBEFF_Gender enumeration contains a set of constants specifying the sex from the rec-
ord of biometric graphic data of the document owner (see section 6.3.25).

enum eCBEFF_Gender
{
gndrUnspecified
gndrMale
gndrFemale =
gndrUnknown =

~

I
ON P O
X~ o~
h
h

}s

Value of constants of sex:

gndrUnspecified - unspecified;

gndrMale - male;
gndrFemale - female;
gndrUnknown — unknown.

6.4.8.eCBEFF_EyeColor

eCBEFF_EyeColor enumeration contains a set of constants specifying the eye color
from the record of biometric graphic data of the document owner
(see section 6.3.25).

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 203

6. SDK SOFTWARE TOOLS

enum eCBEFF_EyeColor

{
eyeUnspecified
eyeBlack
eyeBlue
eyeBrown
eyeGray
eyeGreen
eyeMultiColored =
eyePink
eyeOther =

i

Il
O Jo U wbdhhEFE O

Value of constants of eye color:

eyeUnspecified - unspecified;
eyeBlack - black;
eyeBlue - blue;
eyeBrown — brown;
eyeGray — Qgray,
eyeGreen — green;
eyeMultiColored - multi colored;
eyePink - pink;
eyeOther — other.

6.4.9.eCBEFF _HairColor

eCBEFF _HairColor enumeration contains a set of constants specifying the hair color
from the record of biometric graphic data of the document owner (see section 6.3.25).

enum eCBEFF_HairColor

{
hairUnspecified
hairBald
hairBlack =
hairBlonde =
hairBrown
hairGray
hairWhite
hairRed
hairOther =

}:

Il
O Joy Ul WN K O
~

Value of constants of hair color:

hairUnspecified - unspecified;
hairBald - bald;
hairBlack - black;
hairBlonde - blonde;
hairBrown - brown;

204 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

hairGray — gray,
hairWhite - white;
hairRed - red;

hairOther - other.

6.4.10. eCBEFF FaceFeatureMask

eCBEFF_FaceFeatureMask enumeration contains a set of masks for determination of
the presence of additional features in the record of biometric facial graphic data of the
document owner (see section 6.3.25).

enum eCBEFF FaceFeatureMask

{

ffmGlasses = 0x000003,
ffmMoustache = 0x000005,
ffmBeard = 0x000009,
ffmTeethVisible = 0x000011,
ffmBlink = 0x000021,
ffmMouthOpen = 0x000041,
ffmLeftEyePatch = 0x000081,
ffmRightEyePatch = 0x000101,
ffmDarkGlasses = 0x000201,

ffmDistortionMedical = 0x000401,
}i

Value of constants of additional features:

ffmGlasses - glasses;
ffmMoustache - moustache;
ffmBeard - beard;
ffmTeethVisible - teeth visible;
ffmBlink - blinking;
ffmMouthOpen - mouth open;
ffmLeftEyePatch - left eye patch;
ffmRightEyePatch - right eye patch;
ffmDarkGlasses - dark glasses;

ffmDistortionMedical face is distorted due to medical reasons.

6.4.11. eCBEFF_FaceExpression

eCBEFF_FaceExpression enumeration contains a set of constants specifying the facial
expression in the record of biometric facial graphic data of the document owner (see sec-
tion 6.3.25).

enum eCBEFF _FaceExpression

{
feUnspecified = 0x0000,
feNeutral 0x0001,

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 205

6. SDK SOFTWARE TOOLS

feSmilel = 0x0002,
feSmile?2 = 0x0003,
feRaisedEyebrows = 0x0004,
feEyesLookingAway = 0x0005,
feSquinting = 0x000¢6,
feFrowning = 0x0007,

}i

Constants correspond to various facial expressions:

feUnspecified - unspecified;
feNeutral — neutral;
feSmilel — smile 1;
feSmile?2 - smile 2;
feRaisedEyebrows - raised eyebrows;
feEyesLookingAway - eyes looking away;
feSquinting - squinting;
feFrowning - frowning.

6.4.12. eCBEFF_FacelmageType

eCBEFF_FaceImageType enumeration contains a set of constants specifying the type of
image in the record containing biometric facial graphic data of the document owner
(see section 6.3.28) (in compliance with the ISO/IEC FCD 19794-5:2003).

enum eCBEFF_FaceImageType
{

fitUnspecified 0,
fitBasic =1,
fitFullFrontal = 2,
fitTokenFrontal = 3,
fitOther = 4

~

}i

Constants correspond to various image types:

fitUnspecified - unspecified;
fitBasic - basic;
fitFullFrontal - full frontal;
fitTokenFrontal - partially frontal;
fitOther - other.

6.4.13. eCBEFF_FacelmageTypeFDIS

eCBEFF_FaceImageTypeFDIS enumeration contains a set of constants specifying the
type of image in the record of biometric facial graphic data of the document owner
(see section 6.3.28) (in compliance with the ISO/IEC 19794-5:2005).

206 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

enum eCBEFF_FaceImageTypeFDIS
{

fitFDISBasic = 0,
fitFDISFullFrontal =1,
fitFDISTokenFrontal = 2,

}s

Constants correspond to various image types:

fitFDISBasic - basic;
fitFDISFullFrontal - full frontal;
fitFDISTokenFrontal - partially frontal.

6.4.14. eCBEFF_ImageDataType

eCBEFF_ImageDataType enumeration contains a set of constants specifying the format
of image data in the record of biometric facial graphic data of the document owner
(see section 6.3.28).

enum eCBEFF_ImageDataType
{
1idtJPEG
idtJPEG2000
idtJPEG2000Lossless =
1dtPNG =
by

~

Il
w NP o
~

~

~

Value of constants of image data format:

1idtJPEG - JPEG;
idtJPEG2000 - JPEG-2000;
idtJPEG2000Lossless — lossless JPEG;
idtPNG - PNG.

6.4.15. eCBEFF_ImageColorSpace

eCBEFF_ImageColorSpace enumeration contains a set of constants specifying the im-
age color space in the record of biometric facial graphic data of the document owner
(see section 6.3.28).

enum eCBEFF_ImageColorSpace
{
icsUnspecified
ics24BitRGB =
icsYUV422 =
ics8BitGrayscale
icsOther =

}s

~

~

S w N e O
~

~

~

Value of constants of image color space:

icsUnspecified - unspecified;

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 207

6. SDK SOFTWARE TOOLS

ics24BitRGB — 24 bits per color;
icsYUV422 - YUV 4:2:2;
ics8BitGrayscale— grayscale;
icsOther — other.

6.4.16. eCBEFF_IlmageSourceType

eCBEFF_ImageSourceType enumeration contains a set of constants specifying the
source of the captured image in the record of biometric facial graphic data of the docu-
ment owner (see section 6.3.28).

enum eCBEFF_ImageSourceType

{
istUnspecified =
istPhotoUnknown
istPhotoDigitalCamera
istPhotoScanner
istVideoFrameUnknown
istVideoFrameAnalogueCamera =
istVideoFrameDigitalCamera
istUnknown =

~

~

Il
~ ~

~

Il
~ o0 WwWN RO
~

~

~

}i

Constants correspond to various sources of captured image:

istUnspecified - unspecified;
istPhotoUnknown — photo;
istPhotoDigitalCamera - photo (digital camera);
istPhotoScanner - photo (scanner);
istVideoFrameUnknown — video frame;
istVideoFrameAnalogueCamera - video frame (analogue camera);
istVideoFrameDigitalCamera - video frame (digital camera);
istUnknown — unknown.

6.4.17. eCBEFF_BiometricType

eCBEFF_BiometricType enumeration contains a set of constants specifying the type of bio-
metric data stored in the record of informational data group of the document (see section 6.3.22).

enum eCBEFF BiometricType
{

btUnknown = 0x000000,
btMultiple = 0x000001,
btFacial = 0x000002,
btVoice = 0x000004,
btFingerPrint = 0x000008,
btIris = 0x000010,
btRetina = 0x000020,
btHandGeometry = 0x000040,

208 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

btSignature = 0x000080,
btKeystroke = 0x000100,
btLipMovement = 0x000200,
btThermalFace = 0x000400,
btThermalHand = 0x000800,
btGait = 0x001000,
btBodyOdor = 0x002000,
btDNA = 0x004000,
btEarShape = 0x008000,
btFingerGeometry = 0x010000,
btPalmPrint = 0x020000,
btVeinPattern = 0x040000,
btFootPrint = 0x080000,

}s

Value of constants of biometric data types:

btUnknown - unknown biometric data;
btMultiple — combined biometric data;
btFacial - face;

btVoice - Voice;
btFingerPrint - fingerprint;

btlris - iris;

btRetina — retina;
btHandGeometry - hand geometry data;
btSignature — signature;
btKeystroke - handwriting;
btLipMovement - data on lip movement;
btThermalFace - thermal face map;
btThermalHand — thermal hand map;
btGait - data on gait;
btBodyOdor - body odor;

btDNA — DNA;

btEarShape — ear shape;
btFingerGeometry— finger geometry;
btPalmPrint - palm print;
btVeinPattern - vein pattern;
btFootPrint - foot print.

6.4.18. eCBEFF_BiometricSubTypeMask

eCBEFF_BiometricSubTypeMask enumeration contains a set of constants specifying
the subtype of biometric data stored in the record of informational data group of the doc-
ument (see section 6.3.22).

enum eCBEFF_BiometricSubTypeMask

{
bstMaskRight = 0x01,

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 209

6. SDK SOFTWARE TOOLS

bstMaskLeft = 0x02,
bstMaskThumb = 0x04,
bstMaskPointerFinger = 0x08,
bstMaskMiddleFinger = 0x0C,
bstMaskRingFinger = 0x10,
bstMaskLittleFinger = 0x14,

}s

Value of the constants:

bstMaskRight - right (general feature);
bstMaskLeft - left (general feature);
bstMaskThumb — thumb;
bstMaskPointerFinger — index finger;
bstMaskMiddleFinger — middle finger;
bstMaskRingFinger — ring finger;
bstMaskLittleFinger - little finger.

6.4.19. eCBEFF FormatOwners

eCBEFF_FormatOwners enumeration contains a set of constants specifying the identifier
of the format owner of biometric data representation (see section 6.3.22).

enum eCBEFF _FormatOwners

{

fownUndefined = 0,
fownISO IEC JTC 1 SC 37 = 0x0101,
i

6.4.20. eBIT_SecurityOptions

eBIT_SecurityOptions enumeration contains a set of constants specifying the parame-
ters of biometric data record protection (see section 6.3.22).

enum eBIT SecurityOptions

{

scoNotDefined = -1,
scoNone = 0,
scoPrivacy = 1,
scolntegrity = 2,
scoProvaculntegrity = 3,

}i

6.4.21. eBIT _IntegrityOptions

eBIT IntegrityOptions enumeration contains a set of constants specifying the pa-
rameters of biometric data record integrity (see section 6.3.22).

enum eBIT_IntegrityOptions

210 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

itoNotDefined = -1,
itoNone = 0,
itoMAC = 1,
itoSigned = 2,

}s

6.4.22. eCBEFF_FormatTypes

eCBEFF_FormatTypes enumeration contains a set of constants specifying the identifier
of the biometric data record format (see section 6.3.22).

enum eCBEFF_FormatTypes
{

ftypFinger_Minutiae = 0x0201,
ftypFinger_MinutiaeExtended = 0x0202,
ftypFinger_Pattern = 0x0301,
ftypFinger_PatternExtended = 0x0302,
ftypFinger_Image = 0x0401,
ftypFace_Image = 0x0501,
ftypIris_Image = 0x0601,
ftypIris_ImageExtended = 0x0602,
ftypSignatureRaw = 0x0701,
ftypSignatureRawExtended = 0x0702,
ftypSignatureCommonFeature = 0x0703,
ftypSignatureCommonFeatureExtended = 0x0704,
ftypSignatureBoth = 0x0705,
ftypSignatureBothExtended = 0x0706,
ftypHandGeometry = 0x0801,
ftypHandGeometryExtended = 0x0802,
ftypFinger_ Minutiae_FDIS = 0x0001,
ftypFinger MinutiaeExtended_FDIS = 0x0002,
ftypFinger_Image_FDIS = 0x0007,
ftypFace_Image_FDIS = 0x0008,
ftypIris_Image_FDIS = 0x0009,
ftypIris_ImageExtended_FDIS = 0x000B
bi
Value of constants:
ftypFinger Minutiae - minutiae data;
ftypFinger MinutiaeExtended - extended minutiae data;
ftypFinger Pattern - fingerprint template;
ftypFinger PatternExtended - extended template of fingerprints;
ftypFinger Image - fingerprints image;
ftypFace Image - face image;
ftypIris Image - iris image;
ftypIris ImageExtended - extended iris image;
ftypSignatureRaw - signature image;

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 211

6. SDK SOFTWARE TOOLS

ftypSignatureRawExtended

ftypSignatureCommonFeature

ftypSignatureCommonFeatureExtended -

ftypSignatureBoth
ftypSignatureBothExtended
ftypHandGeometry
ftypHandGeometryExtended
ftypFinger Minutiae FDIS
ftypFinger MinutiaeExtended FDIS
ftypFinger Image FDIS
ftypFace Image FDIS

ftypIris Image FDIS

ftypIris ImageExtended FDIS

extended signature image;

common features of signature;

extended common features of signature;
common features of signature;

extended common features of signature;

hand geometry;

extended hand geometry;

minutiae data (in compliance with the ISO/IEC
19794-5:2005);

extended minutiae data (in compliance with
the ISO/IEC 19794-5:2005);

fingerprint image (in compliance with the
ISO/IEC 19794-5:2005);

face image (in compliance with the ISO/IEC
19794-5:2005);

iris image (in compliance with the ISO/IEC
19794-5:2005);

extended iris image (in compliance with the
ISO/IEC 19794-5:2005).

6.4.23. eCBEFF_ImageCompressionAlgorithm

eCBEFF_ImageCompressionAlgorithm enumeration contains a set of constants speci-
fying the format of image data in the record of biometric graphic data of fingerprints
(palms) of the document owner (see section 6.3.29).

enum eCBEFF_ImageCompressionAlgorithm

{

icaUncompressedNoBitPacking
icaUncompressedBitPacked
icaCompressedWSQ
icaCompressedJPEG
icaCompressedJPEG2000
icaCompressedPNG

}i

Value of constants of the format:

icaUncompressedNoBitPacking -
icaUncompressedBitPacked -
icaCompressedWSQ -
icaCompressedJPEG -
icaCompressedJPEG2000 -
icaCompressedPNG -

Il
O wWwhN P o

~

witho

~

~

~

~

~

ut compression;

bit-packed;

WSQ;
JPEG;

JPEG-2000;

PNG.

212

Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

6.4.24. eCBEFF_FingerPalmPosition

eCBEFF _FingerPalmPosition enumeration contains a set of constants specifying the finger
(palm) position for the current template from the biometric data record (see section 6.3.30).

enum eCBEFF_FingerPalmPosition

{

fppUnknown = 0,
fppRightThumb =1,
fppRightIndexFinger = 2,
fppRightMiddleFinger = 3,
fppRightRingFinger = 4,
fppRightLittleFinger = 5,
fppLeftThumb = 6,
fppLeftIndexFinger =17,
fppleftMiddleFinger = 8§,
fppleftRingFinger =9,
fppleftlittleFinger = 10,
fppPlainRight4Fingers= 13,
fppPlainlLeft4Fingers = 14,
fprpPlainThumbs?2 =15,
fppUnknownPalm = 20,
fppRightFullPalm = 21,
fppRightWritersPalm = 22,
fppLeftFullPalm = 23,
fppLleftWritersPalm = 24,
fprpRightLowerPalm = 25,
fppRightUpperPalm = 26,
fppLeftlLowerPalm = 27,
fppLeftUpperPalm = 28,
fppRightOther = 29,
fppLeftOther = 30,
fppRightInterdigital = 31,
fppRightThenar = 32,
fprpRightHypothenar = 33,
fppleftInterdigital = 34,
fppLeftThenar = 35,
fppLeftHypothenar = 36,
bi
Value of constants:
fppUnknown - position unknown;
fppRightThumb - right thumb;
fppRightIndexFinger - right index finger;
fppRightMiddleFinger - right middle finger;
fppRightRingFinger - right ring finger;
fppRightLittleFinger - right little finger;
fppLeftThumb - left thumb;
fppLeftIndexFinger - leftindex finger;
fppLeftMiddleFinger - left middle finger;

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 213

6. SDK SOFTWARE TOOLS

fppleftRingFinger
fppleftLittleFinger
fppPlainRight4Fingers
fppPlainLeft4Fingers
fppPlainThumbs?
fppUnknownPalm
feppRightFullPalm
feppRightWritersPalm
fppLeftFullPalm
frpleftWritersPalm
frpRightLowerPalm
frpRightUpperPalm
fppleftLowerPalm
fppLeftUpperPalm
frppRightOther
fppLeftOther
feppRightInterdigital
feppRightThenar
frpRightHypothenar
fppleftInterdigital
fppLeftThenar
fppLeftHypothenar

left ring finger;
left little finger;

control 4-fingerprint of the right hand;
control 4-fingerprint of the left hand;

control print of thumbs;
unknown palm;

right palm;

right writer's palm;

left palm;

left writer's palm;

lower part of the right palm;
upper part of the right palm;
lower part of the left palm;
upper part of the left palm;
other right hand print;

other left hand print;
interdigital of the right hand;
thenar of the right hand;
hypothenar of the right hand;
interdigital of the left hand;
thenar of the left hand;

hypo thenar of the left hand.

6.4.25. eCBEFF_FingerPalmimpression

eCBEFF_FingerPalmImpression enumeration contains a set of constants specifying
the method of acquiring fingerprints for the current template from the record of biometric
graphic data of the fingerprints (palm prints) of the document owner (see section 6.3.30).

enum eCBEFF_FingerPalmImpression

{
fpiliveScanPlain =
fpilLiveScanRolled
fpiNonLiveScanPlain =
fpiNonLiveScanRolled =
fpilatent =
fpiSwipe =
fpiliveScanContactless =

}i

~ ~

~

~

~

O oo Wbk Oo
~

~

Value of constants:

fpilLiveScanPlain - "live” scanning;
fpiLiveScanRolled - "live” rolling;
fpiNonLiveScanPlain — scanning;
fpiNonLiveScanRolled — rolling;

214 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

fpilLatent - latent method;
fpiSwipe - swipe;
fpiliveScanContactless - contactless scanning.

6.4.26. eCBEFF ScaleUnits

eCBEFF_ScaleUnits enumeration contains a set of constants specifying the units of res-
olution for images in the record of biometric graphic data of fingerprints (palms) of the
document owner (see section 6.3.29).

enum eCBEFF ScaleUnits
{

suUnspecified = 0,
suPixelsPerInch =1,
suPixelsPerCentimeter= 2,

}s

Constants correspond to various measurement units:

suUnspecified - unspecified;
suPixelsPerInch - pixels per inch (ppi);
suPixelsPerCentimeter - pixels per centimeter;

6.4.27. elrisimageProperties

eIrisImageProperties enumeration contains a set of constants and the bit masks de-
fining the parameters of images stored in a single record of iris graphic data of the docu-
ment owner (see section 6.3.41).

enum eIrisImageProperties

{

iipmHorzOrientation Undefined = 0x0000,
iipmHorzOrientation Base = 0x0001,
iipmHorzOrientation Flipped = 0x0002,
iipmHorzOrientation Mask = 0x0003,
iipmVertOrientation Undefined = 0x0000,
iipmVertOrientation Base = 0x0004,
iipmVertOrientation Flipped = 0x0008,
iipmVertOrientation Mask = 0x000d,

//rectilinear only
iipmScanType Undefined = 0x0000,

iipmScanType Progressive = 0x0010,
iipmScanType InterlaceFrame = 0x0020,
iipmScanType InterlaceField = 0x0030,
iipmScanType Mask = 0x0030,

//all values below - polar only

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 215

6. SDK SOFTWARE TOOLS

iipmOcclusions Undefined = 0x0000,
iipmOcclusions Processed = 0x0040,
iipmOcclusions Mask = 0x0040,
iipmOcclusionFilling ZeroFill = 0x0000,
iipmOcclusionFilling UnitFill = 0x0080,
iipmOcclusionFilling Mask = 0x0080,

iipmBoundaryExtraction Undefined = 0x0000,
iipmBoundaryExtraction Processed = 0x0100,
iipmBoundaryExtraction Mask = 0x0100,

}s

6.4.28. elrisimageFormat
eIrisImageFormat enumeration contains a set of constants specifying the format of imag-

es stored in a single record with iris graphic data of the document owner (see section 6.3.41).

enum eIrisImageFormat

{

iifMono Raw = 0x0002,
11fRGB Raw = 0x0004,
iifMono JPEG = 0x0006,
11fRGB_JPEG = 0x0008,
iifMono JPEG LS = 0x000A,
1i1fRGB JPEG LS = 0x000C,
iifMono JPEG2000 = 0x000E,
11fRGB JPEG2000 = 0x0010,

}s

Constants correspond to various formats of image records:

iifMono Raw - grayscale, without compression;
11fRGB Raw - RGB, without compression;

iifMono JPEG - grayscale, JPEG compression;
11fRGB_JPEG - RGB, JPEG compression;

iifMono JPEG LS - grayscale, lossless JPEG compression;
11fRGB_JPEG_LS - RGB, lossless JPEG;

grayscale, JPEG-2000 compression;
RGB, JPEG-2000 compression.

iifMono JPEG2000
iifRGB JPEG2000

6.4.29. elrisimageTransformation

eIrisImageTransformation enumeration contains a set of constants specifying the
type of conversion to the polar coordinates for images stored in a single record of iris
graphic data of the document owner (see section 6.3.41).

enum eIrisImageTransformation

{

216 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

iitUndefined = 0,
iitStandard
}s

I
=
~

Value of constants:

iitUndefined — undefined;
iitStandard — standard conversion.

6.4.30. elrisSubtype

eIrisSubtype enumeration contains a set of constants specifying the type of iris image
template from the record of biometric graphic data (see section 6.3.42).

enum eIrisSubtype

{

iftUndefined = 0,
iftEyeRight =1,
iftEyeleft = 2,

}s

Value of constants:

iftUndefined - undefined;
iftEyeRight - right eye;
iftEyeleft - left eye.

6.4.31. eMinutiaeExtendedDataType

eMinutiaeExtendedDataType enumeration contains a set of constants specifying the
type of additional information on the coded fingerprint (see section 6.3.34).

enum eMinutiaeExtendedDataType

{

medtReserved = 0x0000,
medtRidgeCountData = 0x0001,
medtCoreAndDeltaData = 0x0002,
medtZonalQualityData = 0x0003,
bi
Value of constants:
medtRidgeCountData — pData field of TMinutiaeExtData structure contains a
pointer to a structure TMinutiaeRidgeCountData;
medtCoreAndDeltaData - pData field of TMinutiaeExtData structure contains a
pointer to a structure TCoreAndDeltaData;
medtZonalQualityData - pData field of TMinutiaeExtData structure contains a

pointer to a structure TZonalQualityData.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 217

6. SDK SOFTWARE TOOLS

6.4.32. eRidgeCountExtractionMethod

eRidgeCountExtractionMethod enumeration contains a set of constants specifying
the ridge extraction method between the pairs of minutiae in the additional information on
the encoded fingerprint (see section 6.3.35).

enum eRidgeCountExtractionMethod
{

rcemNonSpecific = 0x00,
rcemFourNeighbor = 0x01,
rcemEightNeighbor = 0x02,

}s

Value of constants:

rcemNonSpecific - method undefined;
rcemFourNeighbor - by four neighboring areas;
rcemEightNeighbor ~— by eight neighboring areas.

6.4.33. CDocFormat

CDocFormat enumeration contains a set of constants specifying the document type by
the classification of document formats from ISO/IEC 7810 (see section 6.3.20).

enum CDocFormat

{

dfIpDl = 0,
dfIp2 =1,
dfID3 = 2,
dfNON = 3

~

}s

Value of constants of document format:

dfID1 - IDT;
dfID2 - ID2;
dfID3 - ID3;
dfNON - undefined.

Note. Here only the values are given, which are used in the process of RFID SDK work.

6.4.34. eRFID_VisualFieldType

eRFID VisualFieldType enumeration contains a set of constants specifying the type of
logically parsed fields of document filling (see sections 6.3.6, 6.3.15-6.3.19).

enum eRFID VisualFieldType

{
ft SBH SecurityOptions 300,
ft SBH IntegrityOptions = 301,

218 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

ft Date of Creation

ft Validity Period

ft Patron Header Version
ft BDB Type

ft Biometric Type

ft Biometric Subtype

ft Biometric ProductID
ft Biometric Format Owner
ft Biometric Format Type
ft Phone

ft Profession

ft Title

ft Personal Summary

ft Other Valid ID

ft Custody Info

ft Other Name

ft Observations

ft Tax

ft Date of Personalization
ft Personalization SN

ft Date of Record

ft PersonToNotify Date of Record =

ft PersonToNotify Name
ft PersonToNotify Phone
ft PersonToNotify Address
ft DS Certificate Issuer
ft DS Certificate Subject
ft DS Certificate ValidFrom
ft DS Certificate ValidTo
ft VRC DataObject Entry

bi

Value of constants:

ft SBH SecurityOptions -
ft SBH IntegrityOptions -
ft Date of Creation -
ft Validity Period -
ft Patron Header Version -
ft BDB Type -
ft Biometric Type -
ft Biometric Subtype -
ft Biometric ProductID -
ft Biometric Format Owner -
ft Biometric Format Type -
ft Phone -
ft Profession -
ft Title -
ft Personal Summary -
ft Other Valid ID -

- 302,
- 303,
= 304,
= 305,
= 306,
= 307,
- 308,
- 309,
- 310,
- 311,
- 312,
- 313,
= 314,
- 315,
- 31s,
= 317,
- 318,
= 319,
= 320,
- 321,
= 322,
323,
- 324,
= 325,
326,
327,
328,
329,
330,
= 331,

parameters of biometric data protection ;
parameters of biometric data integrity;
date of creation of biometric data record;
term of validity of biometric data record;
version of header of biometric data format owner;
type of biometric data record;

type of biometric data;

subtype of biometric data;

identifier of biometric data;

identifier of biometric data format owner;
biometric data format;

DO'’s phone number;

DO's profession;

DO's title;

DO's personal summary data;

other valid identifier;

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021

219

6. SDK SOFTWARE TOOLS

ft Custody Info

ft Other Name

ft Observations

ft Tax

ft Date of Personalization
ft Personalization SN

ft Date of Record

ft PersonToNotify Date of Record

ft PersonToNotify Name
ft PersonToNotify Phone

ft PersonToNotify Address
ft DS Certificate Issuer

ft DS Certificate Subject
ft DS Certificate ValidFrom

ft DS Certificate ValidTo
ft VRC DataObject Entry

6.4.35. eVisualFieldType

custody information;

other name;

observations;

tax information;

date of document personalization;

serial number of personalization;

date of record entry;

date of record entry on persons to notify in case
of emergency;

name of person to notify in case of emergency;
phone number of person to notify in case of
emergency;

address of person to notify in case of emergency;
textual information about the DS-certificate issuer
(see section 6.3.55);

textual information about the document issuer
(see section 6.3.55);

start date of the DS-certificate validity;

expiration date of the DS-certificate,

vehicle category/restrictions/conditions from
DG1 data group of eDL application [39].

eVisualFieldType enumeration contains a set of constants specifying the type of logi-
cally parsed fields of document filling (see section 6.3.6, 6.3.15-6.3.19).

enum eVisualFieldType
{
ft Document Class Code
ft Issuing State Code
ft Document Number
ft Date of Expiry
ft Date of Issue
ft Date of Birth
ft Place of Birth
ft Personal Number
ft Surname
ft Given Names
ft Nationality
ft Sex
ft Address
ft Authority

ft Surname And Given Names

ft Nationality Code
ft Other

ft Address State

ft Address Street

~

~

~

~

~

~

~

Il
O ~Jo U WN RO
~

| | | | T | A | B
O U NDNN RO
N UTO O U N~ S
NN N N N N N NN

220

Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

ft Address City

ft Artistic Name

ft Academic Title

ft Address Country

ft Address Zipcode

ft eID Residence Permitl
ft eID Residence Permit2
ft eID PlaceOfBirth Street
ft eID PlaceOfBirth City
ft eID PlaceOfBirth State

ft eID PlaceOfBirth Country

ft eID PlaceOfBirth Zipcode
b

Note.

=77,
254,
255,
256,
257,
= 258,
259,
260,
261,
262,
263,
264,

Here only the values are given, which are used in the process of RFID SDK work.

Value of constants:

ft Document Class Code

ft Issuing State Code

ft Document Number

ft Date of Expiry

ft Date of Issue

ft Date of Birth

ft Place of Birth

ft Personal Number

ft Surname

ft Given Names

ft Nationality

ft Sex

ft Address

ft Authority

ft Surname And Given Names
ft Nationality Code

ft Other

ft Artistic Name

ft Academic Title

ft Address Country

ft Address Zipcode

ft Address_ Street

ft Address City

ft eID Residence Permitl
ft eID Residence Permit2
ft eID PlaceOfBirth Street
ft eID PlaceOfBirth City
ft eID PlaceOfBirth State
ft eID PlaceOfBirth Country

document class code;

issuing state code by Doc 9303 ICAQ;
document number,

date of expiry of the document;
date of issue of the document;
DO'’s date of birth;

DO's place of birth;

personal number;

surname;

given names;

nationality;

sex;

address;

issuing authority;

surname and given names;
nationality code by Doc 9303 ICAO;
other information;
artistic/religious name (alias);
academic title;

address (country);

address (zip code);

address (street);

address (city);

data on permanent residence permit (see section 4.3.2);
data on permanent residence permit (see section 4.3.2);

place of birth (street);
place of birth (city);
place of birth (region);
place of birth (country);

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021

6. SDK SOFTWARE TOOLS

ft eID PlaceOfBirth Zipcode - place of birth (zip code).

6.4.36. eGraphicFieldType

eGraphicFieldType enumeration contains a set of constants specifying the logi-
cal type of graphic fields of biometric data record (see section 6.3.8).

enum eGraphicFieldType
{

gf Portrait = 201,
gf Fingerprint = 202,
gf Eye = 203,
gf Signature = 204,
gt BarCode = 205,
gt Proof Of Citizenship = 206,
gt Document Front = 207,
gt Document Rear = 208,
gt Other = 250,

b

Logical types of fields defined by the constants of this enumeration:

gf Portrait - DO's photo;

gf Fingerprint - DO's fingerprint;

gf Eye - DO's iris image;

gf Signature - DO's signature;

gt BarCode - barcode image;

gt Proof Of Citizenship - image of document proving DO's citizenship;
gt _Document Front — image of document face;

gt Document Rear — image of document rear side;

gt Other - undefined type of image.

6.4.37. eMIFARE_KeyMode

eMIFARE KeyMode enumeration contains a set of constants specifying the mode of
authentication when reading data from the RFID-chip via MIFARE® Classic Protocol (see
section 5.7.3).

enum eMIFARE_KeyMode
{

mkmDefault =1,
mkmSingleKey = 2,
mkmFullKeyTable = 3,

}i

Value of constants of authentication mode:

mkmDefault - default;
mkmSingleKey - one key use for all memory sectors;

222 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

mkmFullKeyTable - individual key use for all memory sectors.

6.4.38. eOutputFormat

eOutputFormat enumeration contains a set of constants specifying the format of return data
when receiving results by RFID_CheckResult () function (see sections 5.6.3, 6.1.5).

enum eOutputFormat

{

ofDefault = 0,
ofClipboard XML = 3,
ofFile XML = 4,
of XML = 5,
bi
Value of constants:
ofDefault — default mode. Only a pointer to the result data structure will be re-
turned;

formation of result data structure XML-representation and its transfer
through the clipboard;

ofClipboard XML

ofFile XML — formation of result data structure XML-representation and its record-
ing to a file;
of XML — formation of result data structure XML-representation.

6.4.39. eOutputFormatField

eOutputFormatField enumeration contains a set of constants specifying the mech-
anism of data transfer when using _RFID_CheckResultFromList () function (see sec-
tions 5.6.3, 6.1.6).

enum eOutputFormatField

{

offInfo =0,

offClipboard = ofrTransport Clipboard,
offFile = ofrTransport File,

of £XML = ofrFormat XML,

offFileBuffer = ofrFormat FileBuffer,
i

Value of constants:

offClipboard — transfer of text and graphic field contents through the clipboard;
offFile — recording the graphic field contents of in the file;

of £XML — formation of XML-representation of the result;
offFileBuffer - request of the image of the graphic file.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 223

6. SDK SOFTWARE TOOLS

6.4.40. eRFID ResultStatus

eRFID_ResultStatus enumeration contains a set of constants being the return
codes from RFID CheckResult () and RFID CheckResultFromList () functions

(see sections 5.6.3, 6.1.5, 6.1.6).

enum eRFID ResultStatus

{
RFID ResultStatus NotAvailable
RFID ResultStatus EndOfList

RFID ResultStatus InvalidParameter

RFID ResultStatus Error
}s

Value of constants:

RFID ResultStatus NotAvailable

RFID ResultStatus EndOfList

RFID ResultStatus InvalidParameter
RFID ResultStatus Error

6.4.41. eRFID NotificationCodes

eRFID NotificationCodes enumeration contains a set of notification codes trans-
ferred to the user application by calling the callback-function (see section 6.2).

enum eRFID NotificationCodes

{
RFID Notification Error
RFID Notification DocumentReady
RFID Notification ReadProtocol4
RFID Notification ReadProtocol3
RFID Notification Progress
RFID Notification PA Request
RFID Notification TA Step
RFID Notification SM Required
RFID Notification SM Established
RFID Notification ISOError

= Oxffffffff,

Oxfffffffe,
Oxfffffffd,

= Oxfffffffc,

requested type of the result is not availa-
ble;

the end of the list was reached during the
previous step of receiving result data, and
there are no new data in the processed
list;

invalid parameter of function call;

error in formation of additional result repre-
sentation (when saving a file, placing in the
clipboard or converting to XML format).

= 0x00010000,
= 0x00010001,
= 0x00010003,
= 0x00010004,
= 0x00010008B,
= 0x00013000,
= 0x0001000E,
= 0x0001000F,
= 0x0001400F,
= 0x00011000,

RFID Notification PCSC ReaderDisconnected = 0x00020000,

RFID Notification PCSC ReaderListChanged = 0x00020001,
RFID Notification PCSC ReaderListChanging = 0x00020008,
RFID Notification PCSC BytesReceived = 0x00020002,
RFID Notification PCSC TotalReadingTime = 0x00020003,
RFID Notification PCSC DataReceived = 0x00020004,
224 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

RFID Notification PCSC BytesSent = 0x00020005,
RFID Notification PCSC TotalReadingSpeed = 0x00020006,
RFID Notification PCSC TotalProcessTime = 0x00020007,
RFID Notification PCSC ExtLengthSupport = 0x00020010,
RFID Notification PA CertificateChain = 0x00020011,
RFID Notification PA CertificateChainItem = 0x00020012,
RFID Notification Scenario = 0x00020020,
//composite notification codes

RFID Notification PCSC ReadingDatagroup = 0x00030000,
RFID Notification PCSC FileNotFound = 0x00040000,
RFID Notification PCSC EndOfFile = 0x00050000,
RFID Notification PCSC FileAccessDenied = 0x00060000,
RFID Notification PCSC ApplicationSelected = 0x00070000,
RFID Notification ACProcedure Start = 0x00080000,

RFID Notification ACProcedure Finish = 0x00090000,

RFID Notification PA SecurityObjectCheck = 0x000A0000,
RFID Notification PA FileCheck = 0x000BO0OOO,
RFID Notification PCSC UpdatingDatagroup = 0x000C0000,
RFID Notification AuxiliaryDataValidation = 0x000D000O,
RFID NOtlflcathH RI SectorID = 0x000E000QO0,

RFID Notification Blometrlcs EmptyPlaceholder = 0x000F0000,
bi

Value of notification codes:

e RFID Notification_Error
Error, value contains an error code from eRFID ErrorCodes

e RFID Notification_DocumentReady
Event of appearance of RFID-chip in the scope of the reader antenna or its moving away
from the scope of the reader. Parameter value contains a flag of presence of RFID-chip in
the scope of the reader (true or false)

¢ RFID Notification_ReadProtocold
event of the beginning/end of data reading from the RFID-chip via ISO/IEC 14443-4 proto-
col When working in the batch mode. Parameter value contains false at the beginning
of reading and true at the end

e RFID Notification_ReadProtocol3
Event of the beginning/end of data reading from the RFID-chip via ISO/IEC 14443-3 proto-
col. Parameter value contains false at the beginning of reading and true at the end

e RFID Notification_Progress
Indication of the progress of execution of data reading operation (see sections 5.7.4,
5.8.10)

e RFID Notification_PA_Request
Request of the user-defined DS-certificate priot to the procedure of digital signature verifi-
cation of EF.SOD document security object in the batch mode (see section 5.7.7)

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 225

6. SDK SOFTWARE TOOLS

e RFID Notification_TA_Step
Indication of the next step of terminal authentication in Online-authentication mode (see
section 5.8.15)

e RFID Notification_SM Required
Event of detection of the need to organize a secure communication channel (see sec-
tions 5.7.5, 5.8.8)

e RFID Notification SM Established
Event of the result of the opening of a secure communication channel (see section 5.7.5,
5.8.8)

e RFID Notification ISOError
Event informing the user application on detection of data incompliance processed with the
regulations of normative documents, errors when executing the current operation. value
parameter contains error code (one of eLDS_ParsingErrorCodes oOr
eLDS_ParsingNotificationCodes values)

e RFID Notification_PCSC_ReaderDisconnected
Event of unplugging of the RFID-chip reader from the PC

e RFID Notification_PCSC_ReaderListChanging
Event of the beginning of reorganization of the list of RFID-readers connected to the PC,
working under PC/SC-driver control (see section 5.3)

e RFID Notification_PCSC_ReaderListChanged
Event of the end of reorganization of the list of RFID-readers connected to the PC, working
under PC/SC-driver control (see section 5.3)

e RFID Notification_PCSC_BytesReceived
Transfer of the total amount of information received from the RFID-chip to the user appli-
cation during execution of data reading operation (see section 5.7.8)

e RFID Notification_PCSC_TotalReadingTime
Transfer of the total time of execution of data reading operation to the user application
(see section 5.7.8)

e RFID Notification PCSC_DataReceived
Transfer of the total amount of information and service groups data received from the
RFID-chip to the user application during execution of data reading operation (see sec-
tion 5.7.8)

e RFID Notification_PCSC_BytesSent
Transfer of the total amount of information transmitted to the RFID-chip to the user appli-
cation during execution of data reading operation (see section 5.7.8)

226 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

e RFID Notification_PCSC_TotalReadingSpeed
Transfer of the average data reading rate to the user application (see section 5.7.8)

e RFID Notification PCSC_TotalProcessTime
Transfer of the total time of execution of data reading procedure to the user application
(see section 5.7.8)

e RFID Notification_PCSC_ExtLengthSupport
Event of detection of extended length reading commands support by the RFID-chip (see
section 5.4.4)

e RFID Notification PA _CertificateChain
Event of the start/end of the certificate chain formation for the document security object
digital signature verification as a part of passive authentication procedure (see sec-
tions 5.7.7, 5.8.12). Parameter false — beginning of the operation, true — end.

e RFID Notification_ PA CertificateChainItem
Event that indicates a type of the current analyzed element of the certificate chain being
composed (see section 5.8.12). value contains one of eRFID CertificateType codes.
All subsequent notifications prior to the next
RFID Notification_PA_CertificateChainItem or
RFID_Notification_PA_CertificateChain will correspond to this element.

e RFID Notification_Scenario
A request from the user application of some data or actions in a certain step of the scenar-
io (see section 5.9.3). As a parameter acts VARIANT * pointer to XML-string defining a
concrete step of the scenario, which is also the receiver of data requested.

e RFID Notification_PCSC_ReadingDatagroup
Event of the beginning/end of file reading. The low order WORD contains a file identifier
from eRFID DataFile_Type (see sections 5.7.4, 5.8.10)

e RFID Notification_PCSC_FileNotFound
Event of detection of file absence. The low order WORD contains a file identifier from
eRFID DataFile_Type (see sections 5.7.4, 5.8.10)

e RFID Notification_PCSC_EndOfFile
Event of reaching the file end when performing its reading. The low order WORD contains a
file identifier from eRFID DataFile_Type (see section 5.7.4, 5.8.10)

e RFID Notification_ PCSC_FileAccessDenied
Event of detection of absence of the file access rights. The low order WORD contains a file
identifier from eRFID DataFile_Type (see sections 5.7.4, 5.8.10)

e RFID Notification_ PCSC_ApplicationSelected
Event of the application selection operation. The low order WORD contains a file identifier
from eRFID_Application_Type, value parameter — operation result (see section 5.8.9)

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 227

6. SDK SOFTWARE TOOLS

e RFID Notification ACProcedure_Start
Event of the beginning of the authentication or secure data access procedure. The low or-
der WORD contains a procedure identifier from eRFID_AccessControl_ProcedureType
(see sections 5.7.6, 5.8.7)

e RFID Notification ACProcedure_Finish
Event of the end of the authentication or secure data access procedure.. The low order
WORD contains a procedure identifier from eRFID_AccessControl_ProcedureType,
value parameter — operation result (see sections 5.7.6, 5.8.7)

e RFID Notification_PA_SecurityObjectCheck
Event of the data security object verification as part of PA. The low order WORD contains an
identifier of the file, which is a source of the security object (value from
eRFID DataFile_Type), value parameter — operation result (see sections 5.7.7, 5.8.12)

e RFID Notification_PA_FileCheck
Event of the file data integrity checking as part of PA. The low order WORD contains a file
identifier (value from eRFID DataFile_Type) value parameter — operation result
(see sections 5.7.7, 5.8.13)

e RFID Notification_PCSC_UpdatingDatagroup
Event of the procedure of file contents updating. The low order WORD contains a file identi-
fier from eRFID DataFile_Type (see section 5.8.19)

e RFID Notification_AuxiliaryDataValidation
Event of the auxiliary data verification. The low order WORD contains a type of the verified
data (value from eRFID AuxiliaryDataType) value parameter — operation result
(see section 5.8.18)

e RFID Notification RI SectorID
Event of the receiving of the sector identifier data during RI. The low order WORD contains a
type identifier of the sector key (value from eRFID_SectorKeyType) value parameter —
a pointer to the corresponding identifier data container (see section 5.8.17)

e RFID Notification Biometrics EmptyPlaceholder
Event of the detection of real biometric data absence in DG3 or DG4 and random filling
data usage [35, R7-p1_v2_sllI_0057, R7-p3_v2_sllI_0011]. The low order WORD contains a file
identifier from eRFID DataFile_Type.

228 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

6.4.42. eLDS_ParsingErrorCodes

elLDS_ParsingErrorCodes enumeration contains a set of critical remarks detected dur-

ing analysis of data structure used during SDK work (see section 5.2).

enum eLDS ParsingErrorCodes

{

errLDS Ok

errLDS ASN IncorrectData
errLDS ASN NotEnoughData

errLDS ASN Contents UnexpectedData

errLDS ASN SignedData IncorrectData

errLDS ASN SignedData EncapContents IncorrectData

errLDS ASN SignedData Version IncorrectData

errLDS ASN SignedData DigestAlgorithms IncorrectData

errLDS ASN LDSObject IncorrectData
errLDS ASN LDSObject Version IncorrectData

errLDS ASN LDSObject DigestAlgorithm IncorrectData

errLDS ASN LDSObject DGHashes IncorrectData
errLDS ASN LDSObject VersionInfo IncorrectData

errLDS ASN Certificate IncorrectData

errLDS ASN Certificate Version IncorrectData
errLDS ASN Certificate SN IncorrectData

errLDS ASN Certificate Signature IncorrectData
errLDS ASN Certificate Issuer IncorrectData
errLDS ASN Certificate Validity IncorrectData
errLDS ASN Certificate Subject IncorrectData
errLDS ASN Certificate SubjectPK IncorrectData
errLDS ASN Certificate Extensions IncorrectData

errLDS ASN SignerInfo IncorrectData

errLDS ASN SignerInfo Version IncorrectData
errLDS ASN SignerInfo SID IncorrectData

errLDS ASN SignerInfo DigestAlg IncorrectData
errLDS ASN SignerInfo SignedAttrs IncorrectData
errLDS ASN SignerInfo SignAlg IncorrectData
errLDS ASN SignerInfo Signature IncorrectData

errLDS ASN SignerInfo UnsignedAttrs IncorrectData

errLDS ICAO LDSObject UnsupportedDigestAlgorithm
errLDS ICAO SignedData SignerInfos Empty

errLDS ICAO SignerInfo UnsupportedDigestAlgorithm
errLDS ICAO SignerInfo UnsupportedSignatureAlgorithm

errLDS ICAO_SignerInfo MessageDigestError
errLDS ICAO SignerInfo SignedAttrs Missed

errLDS Auth SignerInfo CantFindCertificate

errLDS Auth Error

errLDS Auth UnsupportedSignatureAlgorithm
errLDS Auth UnsupportedPublicKeyAlgorithm
errLDS Auth MessedAlgorithms

errLDS Auth PublicKeyDatalInvalid

errLDS Auth AlgorithmParametersDatalInvalid

0x00000001,
0x80000001,
0x80000002,
0x80000003,

0x80000008,
0x80000009,
0x80000004A,
0x80000011,

0x80000013,
0x80000014,
0x80000015,
0x80000016,
0x80000012,

0x80000017,
0x80000018,
0x80000019,
0x8000001A,
0x8000001B,
0x8000001C,
0x8000001D,
0x8000001E,
0x8000001F,

0x80000020,
0x80000021,
0x80000022,
0x80000023,
0x80000024,
0x80000025,

= 0x80000026¢,

0x80000027,

= 0x80000030,

0x80000031,
0x80000032,
0x80000033,
0x80000034,
0x80000036,

0x80000035,

0x80000050,
0x80000051,
0x80000052,
0x80000053,
0x80000054,
0x80000055,

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021

229

6. SDK SOFTWARE TOOLS

errLDS Auth SignatureDatalInvalid = 0x80000056,
errLDS Auth UnsupportedDigestAlgorithm = 0x80000057,
errLDS Auth SignatureDatalncorrect = 0x80000058,
errLDS Auth AlgorithmParametersNotDefined = 0x80000059,
errLDS Auth SignatureCheckFailed = 0x80000054,
errLDS DG WrongTag = 0x80000070,
errLDS DG Contents UnexpectedData = 0x80000071,
errLDS BAP SymmetricCypher CantInitialize = 0x81000011,
errLDS PACE Info NotAvailable = 0x81000020,
errLDS PACE SymmetricCypher CantInitialize = 0x81000021,
errLDS PACE KeyAgreement CantInitialize = 0x81000022,
errLDS PACE EphemeralKeys CantCreate = 0x81000023,

errLDS PACE Mapping CantDecodeNonce = 0x81000024,
errLDS PACE SharedSecret CantCreate 0x81000025,
errLDS PACE DomainParams UnsupportedFormat 0x81000026,
errLDS PACE EphemeralKeys Incorrect = 0x81000027,

errLDS PACE Mapping EphemeralKeys Incorrect = 0x81000028,
errLDS PACE Mapping CantPerform = 0x81000029,
errLDS PACE NonMatchingAuthTokens = 0x81000024,
errLDS PACE CAM Data Incorrect = 0x8100002B,
errLDS PACE CAM Data CantVerify = 0x8100002¢C,
errLDS PACE CAM Data NonMatching = 0x8100002D,
errLDS PACE IM Scheme Incorrect = 0x8100002E,
errLDS PACE IM RandomMapping Failed = 0x8100002F,
errLDS CA CantFindPublicKey = 0x81000030,
errLDS CA CantFindInfo = 0x81000031,
errLDS CA IncorrectVersion = 0x81000032,
errLDS CA CantFindDomainParameters = 0x81000033,
errLDS CA KeyAgreement CantInitialize = 0x81000034,
errLDS CA PublicKey UnsupportedAlgorithm = 0x81000035,
errLDS CA EphemeralKeys CantCreate = 0x81000036,
errLDS CA SharedSecret CantCreate = 0x81000037,
errLDS CA NonMatchingAuthTokens = 0x81000038,
errLDS TA IncorrectVersion = 0x81000040,
errLDS TA CantBuildCertificateChain = 0x81000041,
errLDS TA CantFindISPrivateKey = 0x81000042,
errLDS TA PublicKey UnsupportedAlgorithm = 0x81000043,
errLDS TA SignatureBuildingError = 0x81000044,
errLDS TA InvalidKeyAlgorithmParameters = 0x81000045,
errLDS AA PublicKey UnsupportedAlgorithm = 0x81000050,
errLDS AA PublicKey IncorrectData = 0x81000051,
errLDS AA PublicKey IncorrectParameters = 0x81000052,
errLDS AA PublicKey UndefinedParameters = 0x81000053,
errLDS AA Signature IncorrectData = 0x81000054,
errLDS AA UnsupportedRecoveryScheme = 0x81000055,
errLDS AA IncorrectTrailer = 0x81000056,
errLDS AA UnsupportedDigestAlgorithm = 0x81000057,
errLDS RI SectorKey CantFind = 0x81000070,
errLDS RI SectorKey IncorrectData = 0x81000071,

230 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

errLDS RI SectorKey IncompleteData = 0x81000072,
errLDS CV Certificate MissingMandatoryData PK = 0x81000060,
errLDS CV Certificate PublicKey Unsupported = 0x81000062,
errLDS CV Certificate CHAT UnsupportedTerminalType = 0x81000063,
errLDS CV Certificate PrivateKey Unsupported = 0x81000064,
errLDS CV Certificate PrivateKey InvalidParams = 0x81000065,
errLDS CV Certificate IncorrectData = 0x81000160,
errLDS CV Certificate CPI IncorrectData = 0x81000161,
errLDS CV Certificate CAR IncorrectData = 0x81000162,
errLDS CV Certificate PublicKey IncorrectData = 0x81000163,
errLDS CV Certificate CHR IncorrectData = 0x810001¢64,
errLDS CV Certificate CHAT IncorrectData = 0x81000165,
errLDS CV Certificate ValidFrom IncorrectData = 0x810001066,

errLDS CV Certificate ValidTo IncorrectData = 0x81000167,

errLDS CV Certificate Extensions IncorrectData = 0x81000168,
errLDS CV Certificate PrivateKey IncorrectData = 0x81000169,
errLDS CV Certificate PrivateKey Missing = 0x81000164A,

}s

Constants describe appearance of the following situations:

e errLLDS Ok
No remarks.

e crrLLDS_ASN_IncorrectData
Provided ASN.1-data are incorrect (common case — impossible to form elementary ASN.1-
objects).

e crrLDS_ASN_NotEnoughData
Provided ASN.1-data are incorrect (not enough data).

e crrLLDS_ASN_Contents_UnexpectedData
Other contents expected for complex ASN.1-object components (by the structure, number
of elements).

e errLDS ASN SignedData IncorrectData
Incorrect format of SignedData ASN.1-object [7, §5.1], which is the content of the docu-
ment security object [2, §A3.1], [24, part 3, §A.1.2.5] — common case.

e errLDS ASN SignedData EncapContents IncorrectData
Incorrect format of encapsulated encapContentInfo data of SignedData ASN.1-object
[7, §5.1], which is the content of the document security object [2, §A3.1], [24, part 3,
§A.1.2.5].

e errLDS ASN SignedData Version IncorrectData
Invalid version field format of SignedData ASN.1-object [7, §5.1], which is the content
of the document security object [2, §A3.1], [24, part 3, §A.1.2.5].

e errLDS ASN SignedData DigestAlgorithms IncorrectData
Invalid format of digestAlgorithms field of Signedbata ASN.1-object [7, §5.1], which
is the content of the document security object [2, § A3.1], [24, part 3, §A.1.2.5].

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 231

6. SDK SOFTWARE TOOLS

e errLDS ASN LDSObject IncorrectData
Incorrect format of LDSSecurityObject ASN.1-object, encapsulated in EF.sSOD docu-
ment security object (see section 4.3.1) [2, §A3.2].

e errLDS ASN LDSObject Version IncorrectData
Incorrect format of version field of LDSSecurityObject ASN.1-object, encapsulated in
EF.SOD document security object (see section 4.3.1) [2, § A3.2].

e errLDS ASN LDSObject DigestAlgorithm IncorrectData
Incorrect format of hashAlgorithmfield of LDSSecurityObject ASN.1-object, encap-
sulated in EF. SOD document security object (see section 4.3.1) [2, §A3.2].

e errLDS ASN LDSObject DGHashes IncorrectData
Incorrect format of dataGroupHashes field of LDSSecurityObject ASN.1-object, en-
capsulated in EF. SOD document security object (see section 4.3.1) [2, §A3.2].

¢ errLDS ASN LDSObject VersionInfo IncorrectData
Incorrect format of 1dsversionInfo field of LDSSecurityObject ASN.1-object, en-
capsulated in EF. SOD document security object (for LDS version 1.8) [31, §2.2].

e errLDS ASN Certificate IncorrectData
Incorrect format of Certificate ASN.1-object [6, §4.1].

e errLDS ASN Certificate Version IncorrectData
Incorrect format of version field of TBSCertificate ASN.1-object [6, §4.1].

e errILDS ASN Certificate SN IncorrectData
Incorrect format of serialNumber field of TBSCertificate ASN.1-object [6, §4.1].

e errILDS ASN Certificate Signature IncorrectData
Incorrect format of signature field of TBSCertificate ASN.1-object [6, §4.1].

e errLDS ASN Certificate Issuer IncorrectData
Incorrect format of issuer field of TBSCertificate ASN.1-object [6, §4.1].

e errLDS ASN Certificate Validity IncorrectData
Incorrect format of validity field of TBSCertificate ASN.1-object [6, §4.1].

e errILDS ASN Certificate Subject IncorrectData
Incorrect format of subject field of TBSCertificate ASN.1-object [6, §4.1].

e errLLDS ASN Certificate SubjectPK IncorrectData
Incorrect format of subjectPublicKeyInfo field of TBSCertificate ASN.1-object
(6, §4.1].

e errILDS ASN Certificate Extensions IncorrectData
Incorrect format of extensions field of TBSCertificate ASN.1-object [6, §4.1].

232 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

e errLLDS ASN SignerInfo IncorrectData
Incorrect format of signerInfos field of Signedbata ASN.1-object [7, §5.1], which is
the contents of the document security object [2, section IV, §A3.1], [24, part 3, §A.1.2.5].

e errLLDS ASN SignerInfo Version IncorrectData
Incorrect format of version field of SignedInfo ASN.1-object [7, §5.3], containing data
of digital signature of the document security object [2, section IV, §A3.1], [24, part 3,
§A.1.2.5].

e errLDS ASN SignerInfo SID IncorrectData
Incorrect format of sid field of SignedInfo ASN.1-object [7, §5.3], containing data of
digital signature of the document security object [2, section IV, §A3.1], [24, part 3, §A.1.2.5].

e errLDS ASN SignerInfo DigestAlg IncorrectData
Incorrect format of digestAlgorithmfield of SignedInfo ASN.1-object [7, §5.3], con-
taining data of digital signature of the document security object [2, section IV, §A3.1], [24,
part 3, 8A.1.2.5].

e errLDS ASN SignerInfo SignedAttrs IncorrectData
Incorrect format of signedAttrs field of SignedInfo ASN.1-object [7, §5.3], contain-
ing data of digital signature of the document security object [2, section IV, §A3.1].

e errLDS ASN SignerInfo SignAlg IncorrectData
Incorrect format of signatureAlgorithm field of SignedInfo ASN.1-object [7, §5.3],
containing data of digital signature of the document security object [2, section IV, § A3.1],
[24, part 3, §8A.1.2.5].

e errLDS ASN SignerInfo Signature IncorrectData
Incorrect format of signature field of SignedInfo ASN.1-object [7, §5.3], containing
data of digital signature of the document security object [2, section IV, §A3.1], [24, part 3,
§A.1.2.5].

e errLDS ASN SignerInfo UnsignedAttrs IncorrectData
Incorrect format of unsignedAttrs field of SignedInfo ASN.1-object [7, §5.3], con-
taining data of digital signature of the document security object [2, cexuuns IV, §A3.1].

e errLDS ICAO LDSObject UnsupportedDigestAlgorithm
hashAlgorithm field of LDSSecurityObject ASN.1-object, encapsulated in EF.SOD
document security object (see section 4.3.1), contains identifier (OID) of the unsupported
hash algorithm [2, §8.5, section IV, §A3.2].

e errLLDS ICAO SignedData SignerInfos Empty
No digital signature data object was found in the structure of the document security object
(signerInfos list of SignedData ASN.1-object [7, §5.1] is empty).

e errLDS ICAO SignerInfo UnsupportedDigestAlgorithm
digestAlgorithm field of SignerInfo ASN.1-object of document security object digi-

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 233

6. SDK SOFTWARE TOOLS

tal signature [7, §5.3] contains identifier (OID) of unsupported hash algorithm [2,
section 1V, §8.5, 8A3.2], [24, 8A.1].

e errLDS ICAO SignerInfo UnsupportedSignatureAlgorithm
signatureAlgorithm field of SignerInfo ASN.1-object of document security object
digital signature [7, §5.3] contains identifier (OID) of unsupported digital signature algo-
rithm [2, section IV, §8, §A3.2], [24, §A.1].

e errLDS ICAO SignerInfo MessageDigestError
Error the of message digest calculation.

e errLDS ICAO SignerInfo SignedAttrs Missed
Mandatory signedAttrs field of SignerInfo ASN.1-object of EF.SOD document se-
curity object is not found [7, §5.3], [2, cekums IV, §A3.1].

e errLDS Auth SignerInfo CantFindCertificate
DS-certificate to verify the digital signature is not found.

e errLDS Auth Error
Digital signature verification failed (common case).

e errLDS Auth UnsupportedSignatureAlgorithm
Unsupported digital signature algorithm.

¢ errLDS Auth UnsupportedPublicKeyAlgorithm
Unsupported digital signature public key algorithm.

e errLDS Auth MessedAlgorithms
Digital signature algorithm does not correspond to the public key algorithm.

e errLDS Auth PublicKeyDatalInvalid
Incorrect format of the public key data [5, §2.3].

e errLDS Auth AlgorithmParametersDatalnvalid
Incorrect format of the public key parameters data [5, §2.3].

e errLLDS Auth SignatureDatalInvalid
Incorrect format of the digital signature data [5, §2.2].

e errLDS Auth SignatureDatalncorrect
Incorrect data of the digital signature (by length or compliance with a range of valid values).

e errLDS Auth UnsupportedDigestAlgorithm
Unsupported data hash algorithm for the digital signature verification.

e errLDS Auth AlgorithmParametersNotDefined
ECDSA public key parameters are not defined. According to [5, §2.2] they are defined by
EcpkParameters ASN.1-object by one of three possible ways: explicitly, by the named
curve identifier, implicitly. In case when the parameters are assigned implicity or the speci-

234 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

fied identifier of the curve is not supported, a procedure of verifying the digital signature
becomes impossible.

e errLLDS Auth SignatureCheckFailed
Digital signature verification failed.

e crrI.LDS_DG_WrongTag
Incorrect file ASN.1-data tag — the actual value is not as expected (see section 6.4.3).

e errLLDS_DG_Contents_UnexpectedData
Incorrect format of the file ASN.1-data [2, Section Ill, Appendix A], [24, part 2, A].

e errLDS BAP SymmetricCypher CantInitialize
Can't create specified cypher object for BAP procedure [38, annex B].

e errLLDS_PACE _Info_NotAvailable
PACE parameters are not defined at the time of the procedure — the corresponding
PACEInfo is not found [23, §5.3.1]

e errILLDS_PACE_SymmetricCypher_CantInitialize
Error of symmetric cipher object creating for PACE [23, §3.4]

e errILDS_PACE_KeyAgreement_CantInitialize
Error of key agreement object creating for PACE [23, §3.4]

e errIL.LDS_PACE_EphemeralKeys_CantCreate
Error of creating a pair of ephemeral keys for PACE [23, §3.2]

e errI.DS_PACE_Mapping_CantDecodeNonce
Error of nonce decoding, received from the chip, for use in the mapping operation
[23, §3.4]

e errLLDS_PACE_SharedSecret_CantCreate
Error of computing shared secret for PACE procedure[23, §3.2]

e cerrILDS_PACE_DomainParams_UnsupportedFormat
According to [23, §3.4.1.2] for the parameters of ECDH public key it is allowed to use only
prime-curves with unpacked points [5, §2.3.5]

e crrILDS_PACE_EphemeralKeys_Incorrect
PACE ephemeral public keys (terminal and chip) differ in the length or the same [23, §3.2]

e errLDS_PACE_Mapping_EphemeralKeys_Incorrect
PACE ephemeral public keys (terminal and chip) for use in the mapping operation differ in
the length [23, §3.2]

e errI.LDS_PACE_Mapping_CantPerform
Error of PACE mapping operation — failed to compute the new key pair [23, §3.2]

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 235

6. SDK SOFTWARE TOOLS

e crrIDS_PACE_NonMatchingAuthTokens
PACE authentication tokens of terminal and chip are different [23, §3.2]

e errLDS PACE CAM Data Incorrect
Incorrect PACE-CAM data received from the chip [23, §3.4.4, §3.5.3].

e crrLDS PACE CAM Data CantVerify
Can't verify PACE-CAM data [23, §3.4.4].

e errLDS PACE CAM Data NonMatching
PACE-CAM data verification failed (length, contents) [23, §3.4.4].

e errLDS PACE IM Scheme Incorrect
Incorrect Integrated Mapping scheme (allowed Elliptic Curves only) [23, §3.4.2].

e errLDS PACE IM RandomMapping Failed
Can't perform Pseudo Random Mapping [23, §3.4.2.2.3].

e errILDS_CA_CantFindPublicKey
CA public key parameters are not defined at the time of the procedure — the corresponding
ChipAuthenticationPublicKeyInfo is not found [1, §A.1.1.1], [24, part 3, §A.1.1.2]

e crrLLDS_CA_CantFindInfo
CA parameters (for version 2) are not defined at the time of the procedure — the corre-
sponding ChipAuthenticationInfo is not found [24, part 3, §A.1.1.2]

e errLLDS_CA_IncorrectVersion
Unsupported CA version in ChipAuthenticationInfo field of the ASN.1-object. The
values 1 or 2 are allowed [1, 8§A.1.1.1], [24, part 3, §A.1.1.2]

e errLDS_CA_CantFindDomainParameters
Impossible to define the CA public key parameters at the time of the procedure;

e errI.DS_CA_KeyAgreement_CantInitialize
Error of key object agreement creation for CA [24, part 1 §3.4, part 2 §3.3]

e crrILDS_CA_PublicKey_UnsupportedAlgorithm
Unsupported CA public key algorithm [24, part 3, §A.4]

e errLLDS_CA_EphemeralKeys_CantCreate
Error of creating a pair of ephemeral keys for CA [24, part 1 §3.4, part 2 §3.3]

e errLLDS_CA_SharedSecret_CantCreate
Error of computing shared secret for CA [24, part 1 §3.4, part 2 §3.3]

e crrILDS_CA_NonMatchingAuthTokens
CA authentication tokens of terminal and chip are different [24, part 1 §3.4, part 2 §3.3]

236 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

e crrLLDS_TA _IncorrectVersion
Unsupported TA version in TerminalAuthenticationInfo field of the ASN.1-object.
The values 1 or 2 are allowed [1, §A.1.1.2], [24, part 3, §A.1.1.3]

e crrI.DS TA CantBuildCertificateChain
Error of building a certificate chain (see sections 4.9.3, 5.8.15). DV- and terminal certificate
must be present at least

e errILDS_TA_CantFindISPrivateKey
Data of private key corresponding to the terminal certificate not found (see sections 4.9.3,
5.8.15)

e errLDS_TA_PublicKey_UnsupportedAlgorithm
Unsupported TA public key algorithm [1, §A.3], [24, part 3, §A.6]

e errILDS_TA_SignatureBuildingError
Error of TA digital signature calculation (see sections 4.9.3, 5.8.15)

e errILDS_TA_InvalidKeyAlgorithmParameters
Incorrect TA public key parameters [1, §C.3], [24, §D.3]

e errILDS_AA_PublicKey_UnsupportedAlgorithm
Unsupported AA public key algorithm [2, §A4]

e errLDS_AA_PublicKey_IncorrectData
Incorrect format of AA public key data [2, §A4.1]

e errLLDS_AA_PublicKey_IncorrectParameters
Incorrect format of AA public key parameters data [2, §A4.1]

e crrI.DS_AA_PublicKey_UndefinedParameters
ECDSA public key parameters are not defined. According to [5, §2.2] they are defined by
EcpkParameters ASN.1-object by one of three possible ways: explicitly, by the named
curve identifier, implicitly. In case when the parameters are assigned implicity or the speci-
fied identifier of the curve is not supported, a procedure of AA becomes impossible

e errILDS_AA_Signature_IncorrectData
Incorrect data of AA digital signature (by length or compliance with a range of valid values)

e errILDS_AA_UnsupportedRecoveryScheme
Unsupported message recovery scheme. According to [2, §A4.2] only algorithm of partial
recovery is supported

e crrLLDS AA IncorrectTrailer
Unsupported trailer of recovered data — only ‘BC’ and ‘CC’ values are supported [28, §8.1.2]

e errI.LDS_AA _UnsupportedDigestAlgorithm
Unsupported data hash algorithm [28, §7.3], [29]

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 237

6. SDK SOFTWARE TOOLS

e crrIDS_RI_SectorKey_CantFind
It is impossible to find the sector public key data for RI (see section 5.8.17)

e crrILDS_RI_SectorKey_IncorrectData
Incorrect sector public key data (see section 5.8.17)

e errLLDS_RI_SectorKey_IncompleteData
All RI sector public key key parameters must be defined explicitly [24, part 3, §B.4.1]

e errLDS CV Certificate MissingMandatoryData PK
Absence of mandatory data fields in the structure of CV-certificate public key object
[24, part 3, §C.1]

e errLDS CV Certificate PublicKey Unsupported
Unsupported public key format in the CV-certificate (for TA) (See also description of
errLDS_TA_PublicKey_UnsupportedAlgorithm) [24, part 3, §A.6]

e errLDS CV Certificate CHAT UnsupportedTerminalType
Unsupported type of terminal in the CV-certificate [24, part 3, §C.4]

e errLDS CV Certificate PrivateKey Unsupported
Unsupported key algorithm in the terminal private key data (see section 4.9.3)

e errLLDS CV Certificate PrivateKey InvalidParams
Incorrect terminal private key parameters data (see section 4.9.3)

e errLDS CV Certificate IncorrectData
Incorrect format of CV-certificate TLV-data [24, part 3, §C.1].

e errLDS CV Certificate CPI IncorrectData
Incorrect format of the CV-certificate "Certificate Profile Identifier" field [24, part 3, §C.1].

e errLLDS CV Certificate CAR IncorrectData
Incorrect format of the CV-certificate "Certificate Authority Reference" field [24, part 3, §C.1].

e errLLDS CV Certificate PublicKey IncorrectData
Incorrect format of the CV-certificate public key data [24, part 3, §C.1].

e errLDS CV Certificate CHR IncorrectData
Incorrect format of the CV-certificate "Certificate Holder Reference" field [24, part 3, §C.1].

e errLLDS CV Certificate CHAT IncorrectData
Incorrect format of the CV-certificate "Certificate Holder Authorization Template" field [24,
part 3, §C.1].

e errLLDS CV Certificate ValidFrom IncorrectData
Incorrect format of the CV-certificate "Certificate Effective Date" field [24, part 3, §C.1].

238 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

e errLLDS CV Certificate ValidTo IncorrectData
Incorrect format of the CV-certificate "Certificate Expiration Date" field [24, part 3, §C.1].

e errLLDS CV Certificate Extensions IncorrectData
Incorrect format of the CV-certificate extensions[24, part 3, §C.1].

e errLDS CV Certificate PrivateKey IncorrectData
Incorrect format of the private key data [10].

e errILDS CV Certificate PrivateKey Missing
Corresponding private key is not found for the terminal certificate (see sections 4.9.3,
5.5.3).

6.4.43. eLDS_ParsingNotificationCodes

eLDS_ParsingErrorCodes enumeration contains a set of codes of non-critical remarks
detected during analysis of data structure used during SDK work (see section 5.2).

enum eLDS ParsingNotificationCodes

{

ntfLDS ASN Certificate IncorrectVersion = 0x90000001,
ntfLDS ASN Certificate NonMatchingSignatureAlgorithm = 0x90000002,
ntfLDS ASN Certificate IncorrectTimeCoding = 0x90000003,
ntfLDS ASN Certificate IncorrectUseOfGeneralizedTime = 0x90000004,
ntfLDS ASN Certificate EmptyIssuer = 0x90000005,
ntfLDS ASN Certificate EmptySubject = 0x90000006,

ntfLDS ASN Certificate UnsupportedCriticalExtension = 0x90000008,

ntfLDS ASN Certificate ForcedDefaultCSCARole = 0x9000000E,
ntfLDS ASN Certificate ForcedDefaultDSRole = 0x9000000F,
ntfLDS ASN Certificate IncorrectIssuerSubjectDS = 0x90000010,
ntfLDS ASN Certificate DuplicatingExtensions = 0x90000017,
ntfLDS ICAO Certificate Version Missed = 0x90000200,
ntfLDS ICAO Certificate Version Incorrect = 0x90000201,
ntfLDS ICAO Certificate SN NonCompliant = 0x90000241,
ntfLDS ICAO Certificate Issuer Country Missed = 0x90000202,
ntfLDS ICAO Certificate Issuer CommonName Missed = 0x90000203,
ntfLDS ICAO Certificate Issuer CountryNonCompliant = 0x90000204,
ntfLDS ICAO Certificate Issuer SN NonCompliant = 0x90000242,
ntfLDS ICAO Certificate Issuer AttributeNonCompliant = 0x90000244,
ntfLDS ICAO Certificate Subject Country Missed = 0x90000205,
ntfLDS ICAO Certificate Subject CommonName Missed = 0x90000206,
ntfLDS ICAO Certificate Subject CountryNonCompliant = 0x90000207,
ntfLDS ICAO Certificate Subject SN NonCompliant = 0x90000243,

ntfLDS ICAO Certificate Subject AttributeNonCompliant = 0x90000245,

ntfILDS ICAO Certificate IssuerSubject Country NonMatching= 0x90000246,
ntfLDS ICAO Certificate UsingNonCompliantData = 0x90000208,
ntfLDS ICAO Certificate UnsupportedSignatureAlgorithm = 0x90000209,
ntfLDS ICAO Certificate UnsupportedPublicKeyAlgorithm = 0x90000204,
ntfLDS ICAO Certificate MissedExtensions = 0x9000020B,
ntfLDS ICAO Certificate Validity = 0x9000020¢C,
ntfLDS ICAO Certificate Ext UsingNonCompliantData = 0x9000020D,

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 239

6. SDK SOFTWARE TOOLS

ntfLDS ICAO Certificate Ext KeyUsage Missed = 0x9000020E,
ntfLDS ICAO Certificate Ext KeyUsage NotCritical = 0x9000020F,
ntfLDS ICAO Certificate Ext KeyUsage IncorrectData = 0x90000210,
ntfLDS ICAO Certificate Ext BasicC Missed = 0x90000211,
ntfLDS ICAO Certificate Ext BasicC IncorrectUsagel = 0x90000212,
ntfLDS ICAO Certificate Ext BasicC IncorrectUsage2 = 0x90000213,
ntfLDS ICAO Certificate Ext BasicC NotCritical = 0x90000214,
ntfLDS ICAO Certificate Ext BasicC IncorrectData = 0x90000215,
ntfLDS ICAO Certificate Ext BasicC PathLenC Missed = 0x90000216,
ntfLDS ICAO Certificate Ext BasicC PathLenC Incorrect = 0x90000217,
ntfLDS ICAO Certificate Ext ExtKeyUsage NotCritical = 0x90000218,
ntfLDS ICAO Certificate Ext ExtKeyUsage IncorrectUsage = 0x90000219,
ntfLDS ICAO Certificate Ext ExtKeyUsage IncorrectData = 0x9000021A,
ntfLDS ICAO Certificate Ext AuthKeyID Missed = 0x9000021B,
ntfLDS ICAO Certificate Ext AuthKeyID IncorrectData = 0x9000021cC,
ntfLDS ICAO Certificate Ext AuthKeyID KeyID Missed = 0x9000021D,
ntfLDS ICAO Certificate Ext SubjectKeyID Missed = 0x9000021E,
ntfLDS ICAO Certificate Ext SubjectKeyID IncorrectbData = 0x9000021F,
ntfLDS ICAO Certificate Ext PrivateKeyUP Missed = 0x90000220,
ntfLDS ICAO Certificate Ext PrivateKeyUP IncorrectbData = 0x90000221,
ntfLDS ICAO Certificate Ext PrivateKeyUP Empty = 0x90000222,
ntfLDS ICAO Certificate Ext SubjectAltName Missed = 0x90000223,
ntfLDS ICAO Certificate Ext SubjectAltName IncorrectData = 0x90000224,
ntfLDS ICAO Certificate Ext SubjectAltName Empty = 0x90000225,
ntfLDS ICAO Certificate Ext SubjectAltName NonCompliant = 0x90000226,
ntfLDS ICAO Certificate Ext SubjectAltName Critical = 0x90000228,
ntfLDS ICAO Certificate Ext SubjectAltName DN Empty = 0x90000229,

ntfLDS ICAO Certificate Ext SubjectAltName DN Incorrect = 0x9000022A,
ntfLDS ICAO Certificate Ext SubjectAltName DN NonCompliant = 0x9000022B,

ntfLDS ICAO Certificate Ext IssuerAltName Missed = 0x9000022C,
ntfLDS ICAO Certificate Ext IssuerAltName IncorrectData = 0x9000022D,
ntfLDS ICAO Certificate Ext IssuerAltName Empty = 0x9000022E,
ntfLDS ICAO Certificate Ext IssuerAltName NonCompliant = 0x9000022F,
ntfLDS ICAO Certificate Ext IssuerAltName Critical = 0x90000231,
ntfLDS ICAO Certificate Ext IssuerAltName DN Empty = 0x90000232,
ntfLDS ICAO Certificate Ext IssuerAltName DN Incorrect = 0x90000233,

ntfLDS ICAO Certificate Ext IssuerAltName DN NonCompliant= 0x90000234,

ntfLDS ICAO Certificate Ext CSCA AltNames NonMatching = 0x90000247,
ntfLDS ICAO Certificate Ext NameChange IncorrectData = 0x90000248,
ntfLDS ICAO Certificate Ext NameChange NonCompliant = 0x90000249,
ntfLDS ICAO Certificate Ext NameChange Critical = 0x90000244,
ntfLDS ICAO Certificate Ext DocTypelList Missed = 0x90000235,
ntfLDS ICAO Certificate Ext DocTypelist IncorrectData = 0x90000236,
ntfLDS ICAO Certificate Ext DocTypelList Version = 0x90000237,
ntfLDS ICAO Certificate Ext DocTypelList DocTypes = 0x90000238,
ntfLDS ICAO Certificate Ext DocTypelList DocTypes Empty = 0x90000239,

240 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

ntfLDS ICAO Certificate Ext DocTypeList NonCompliant = 0x9000024B,
ntfLDS ICAO Certificate Ext DocTypelList Critical = 0x9000024c¢C,
ntfLDS ICAO Certificate Ext CertPolicies IncorrectData = 0x9000023A,
ntfLDS ICAO Certificate Ext CertPolicies Empty = 0x9000023B,

ntfLDS ICAO Certificate Ext CertPolicies PolicyID Missed = 0x9000023C,

ntfLDS ICAO Certificate Ext CRLDistPoint Missed = 0x9000023D,
ntfLDS ICAO Certificate Ext CRLDistPoint IncorrectData = 0x9000023E,
ntfLDS ICAO Certificate Ext CRLDistPoint Empty = 0x9000023F,
ntfLDS ICAO Certificate Ext CRLDistPoint PointMissed = 0x90000240,
ntfLDS ICAO Certificate Ext Optional Critical = 0x9000024D,
ntfLDS ICAO _COM LDS Version Incorrect = 0x90000020,
ntfLDS ICAO COM LDS Version Missing = 0x90000021,
ntfLDS ICAO COM Unicode Version Incorrect = 0x90000022,

ntfLDS ICAO COM Unicode Version Missing = 0x90000023,

ntfLDS ICAO COM DGPM Incorrect = 0x90000024,
ntfLDS ICAO COM DGPM Missing = 0x90000025,
ntfLDS ICAO COM DGPM Unexpected = 0x90000026,
ntfLDS ICAO Application LDSVersion Unsupported = 0x90000030,
ntfILDS ICAO Application UnicodeVersion Unsupported = 0x90000031,
ntfLDS ICAO Application LDSVersion Inconsistent = 0x90000032,
ntfLDS ICAO Application UnicodeVersion Inconsistent = 0x90000033,
ntfLDS ASN SignedData OID Incorrect = 0x90000100,
ntfLDS ASN SignedData Version Incorrect = 0x900001A0,
ntfLDS ASN SignedData ContentOID Incorrect = 0x900001A1,
ntfILDS ICAO SignedData Version Incorrect = 0x%90000101,
ntfLDS ICAO SignedData DigestAlgorithms Empty = 0x90000102,
ntfLDS ICAO_ SignedData DigestAlgorithms Unsupported = 0x90000103,
ntfLDS ICAO SignedData SignerInfos MultipleEntries = 0x90000109,
ntfLDS ICAO_SignedData Certificates Missed = 0x900001BO,
ntfLDS ICAO SignedData Certificates Empty = 0x900001R1,
ntfLDS ICAO SignedData CRLs IncorrectUsage = 0x900001B2,
ntfLDS ICAO LDSObject IncorrectContentOID = 0x90000104,
ntfLDS ICAO LDSObject DGNumber Incorrect = 0x90000105,
ntfLDS ICAO LDSObject DGHash Missing = 0x90000106,
ntfLDS ICAO LDSObject DGHash Extra = 0x90000107,
ntfLDS ICAO LDSObject Version Incorrect = 0x90000108,
ntfLDS ICAO MasterList Version Incorrect = 0x900001coO,
ntfLDS ICAO DeviationList Version Incorrect = 0x900001cCS8,
ntfLDS BSI DefectList Version Incorrect = 0x900001DO0,
ntfLDS BSI BlackList Version Incorrect = 0x900001D8,
ntfLDS ASN SignerInfo Version Incorrect = 0x90000104a,
ntfLDS ASN SignerInfo SID IncorrectChoice = 0x9000010B,
ntfLDS ASN SignerInfo SID DigestAlgorithmNotListed = 0x9000010¢C,
ntfLDS ASN SignerInfo MessageDigestAttr Missing = 0x9000010D,
ntfLDS ASN SignerInfo MessageDigestAttr Data = 0x9000010E,
ntfLDS ASN SignerInfo MessageDigestAttr Value = 0x9000010F,
ntfLDS ASN SignerInfo ContentTypeAttr Missing = 0x90000110,

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 241

6. SDK SOFTWARE TOOLS

ntfLDS ASN SignerInfo ContentTypeAttr Data = 0x90000111,
ntfLDS ASN SignerInfo ContentTypeAttr Value = 0x90000112,
ntfLDS ASN SignerInfo SigningTimeAttr Missing = 0x9000011B,
ntfLDS ASN SignerInfo SigningTimeAttr Data = 0x9000011C,
ntfLDS ASN SignerInfo SigningTimeAttr Value = 0x9000011D,

ntfLDS ASN SignerInfo ListContentDescriptionAttr Missing = 0x9000011E,

ntfLDS ASN SignerInfo ListContentDescriptionAttr Data = 0x9000011F,
ntfLDS Auth SignerInfo Certificate Validity = 0x90000115,
ntfLDS Auth SignerInfo Certificate RootIsNotTrusted = 0x90000116,
ntfLDS Auth SignerInfo Certificate CantFindCSCA = 0x9%90000117,
ntfLDS Auth SignerInfo Certificate Revoked = 0x90000118,
ntfLDS Auth SignerInfo Certificate Signaturelnvalid = 0x90000119,
ntfLDS UnsupportedImageFormat = 0x9000011A,
ntfLDS MRZ DocumentType Unknown = 0x00022008,
ntfLDS MRZ IssuingState SyntaxError = 0x00022009,
ntfLDS MRZ Name IsVoid = 0x0002200A,
ntfLDS MRZ Number IncorrectChecksum = 0x0002200D,
ntfLDS MRZ Nationality SyntaxError = 0x0002200E,
ntfLDS MRZ DOB SyntaxError = 0x0002200F,
ntfLDS MRZ DOB Error = 0x00022010,
ntfLDS MRZ DOB IncorrectChecksum = 0x00022011,
ntfLDS MRZ Sex Incorrect = 0x00022012,
ntfLDS MRZ DOE SyntaxError = 0x00022013,
ntfLDS MRZ DOE Error = 0x00022014,
ntfLDS MRZ DOE IncorrectChecksum = 0x00022015,
ntfLDS MRZ OptionalData IncorrectChecksum = 0x00022016,
ntfLDS MRZ IncorrectChecksum = 0x00022017,
ntfLDS MRZ Incorrect = 0x00022018,
ntfLDS Biometrics FormatOwner Missing = 0x90010000,
ntfLDS Biometrics FormatOwner Incorrect = 0x90020000,
ntfLDS Biometrics FormatType Missing = 0x90030000,
ntfLDS Biometrics FormatType Incorrect = 0x90040000,
ntfLDS Biometrics Type Incorrect = 0x90050000,
ntfLDS Biometrics SubType Missing = 0x90060000,
ntfLLDS Biometrics SubType Incorrect = 0x90070000,
ntfLDS Biometrics BDB Image Missing = 0x90080000,
ntfLDS Biometrics BDB FormatID Incorrect = 0x90090000,
ntfLDS Biometrics BDB Version Incorrect = 0x900A0000,
ntfLDS Biometrics BDB Datalength Incorrect = 0x900B000O,
ntfLDS Biometrics BDB Data Gender = 0x90100000,
ntfLDS Biometrics BDB Data EyeColor = 0x90110000,
ntfLDS Biometrics BDB Data HairColor = 0x90120000,
ntfLDS Biometrics BDB Data PoseAngle Yaw = 0x90130000,
ntfLDS Biometrics BDB Data PoseAngle Pitch = 0x90140000,
ntfLDS Biometrics BDB Data PoseAngle Roll = 0x90150000,
ntfLDS Biometrics BDB Data PoseAngleU Yaw = 0x90160000,
ntfLLDS Biometrics BDB Data PoseAngleU Pitch = 0x90170000,
ntfLDS Biometrics BDB Data PoseAngleU Roll = 0x90180000,
ntfLDS Biometrics BDB Data FacelImageType = 0x90190000,
ntfLDS Biometrics BDB Data ImageDataType = 0x901A0000,
ntfLDS SI PACE Info UnsupportedStdParameters = 0x91000000,
ntfLDS SI PACE Info DeprecatedVersion = 0x91000001,

242 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

ntfLDS SI PACE DomainParams UsingStdRef = 0x91000002,
ntfLDS SI PACE DomainParams UnsupportedAlgorithm = 0x91000003,
ntfLDS SI CA Info IncorrectVersion = 0x91000004,
ntfLDS SI CA PublicKey UnsupportedAlgorithm = 0x91000005,
ntfLDS SI CA DomainParams UnsupportedAlgorithm = 0x91000006,
ntfLDS SI TA Info IncorrectVersion = 0x91000007,
ntfLDS SI TA Info FileIDForVersion2 = 0x91000008,
ntfLDS SI elIDSecurity UnsupportedDigestAlgorithm = 0x91000009,
ntfLDS SI RI Info IncorrectVersion = 0x91000004,
ntfLDS SI RI DomainParams UnsupportedAlgorithm = 0x9100000B,
ntfLDS SI AA Info IncorrectVersion = 0x9100000c¢C,
ntfLDS SI AA Info UnsupportedAlgorithm = 0x9100000D,
ntfLDS SI AA Info InconsistantAlgorithmReference = 0x9100000E,
ntfLDS SI Storage PACE Info NotAvailable = 0x91000100,
ntfLDS SI Storage PACE Info NoStdParameters = 0x91000101,
ntfLDS SI Storage PACE Info NoMatchingDomainParams = 0x91000102,
ntfLDS SI Storage CA Info NotAvailable = 0x91000103,
ntfLDS SI Storage CA DomainParams NoRequiredOption = 0x91000104,
ntfLDS SI Storage CA DomainParams NotAvailable = 0x91000105,
ntfLDS SI Storage CA AnonymousInfos = 0x91000106,
ntfLDS SI Storage CA Info NoMatchingDomainParams = 0x91000107,
ntfLDS SI Storage CA Info NoMatchingPublicKey = 0x91000108,
ntfLDS SI Storage CA IncorrectInfosQuantity = 0x91000109,
ntfLDS SI Storage TA Info NotAvailable = 0x91000104,
ntfLDS SI Storage CardInfolLocator MultipleEntries = 0x9100010B,
ntfLDS SI Storage elIDSecurityInfo MultipleEntries = 0x9100010cC,
ntfLDS SI Storage PrivilegedTI MultipleEntries = 0x9100010D,
ntfLDS SI Storage PrivilegedTI IncorrectUsage = 0x9100010E,
ntfLDS SI Storage RI DomainParams MultipleEntries = 0x9100010F,
ntfLDS SI Storage PACEInfos NonConsistant = 0x91000110,
ntfLDS CVCertificate Profile IncorrectVersion = 0x91000201,
ntfLDS CVCertificate Validity = 0x91000202,
ntfLDS CVCertificate NonCVCADomainParameters = 0x91000203,
ntfLDS CV Certificate PrivateKey IncorrectVersion = 0x91000204,
ntfLDS TA PACEStaticBindingUsed = 0x91000300,
ntfLDS Auth MLSignerInfo Certificate Validity = 0x92000115,
ntfLDS Auth MLSignerInfo Certificate RootIsNotTrusted = 0x92000116,
ntfLDS Auth MLSignerInfo Certificate CantFindCSCA = 0x92000117,
ntfLDS Auth MLSignerInfo Certificate Revoked = 0x92000118,
ntfLDS Auth MLSignerInfo Certificate SignaturelInvalid = 0x92000119,

}s

Constants describe appearance of the following situations:

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 243

6. SDK SOFTWARE TOOLS

e ntfLDS ASN Certificate_IncorrectVersion
Incorrect version of the certificate — the value of version field of TBSCertificate
ASN.T1-object does not match the object contents [6, §4.1.2.1].

e ntfLDS_ASN_Certificate_NonMatchingSignatureAlgorithm
The contents of signature field of TBSCertificate ASN.1-object does not match the
contents of signatureAlgorithm field of Certificate object [6, §4.1.2.3].

e ntfLDS_ASN_Certificate_IncorrectTimeCoding
Incorrect format of the contents of validity field of TBSCertificate ASN.1-object
[6, §4.1.2.5]. Expected date format for UTCTime — YYMMDDHHMMSSZ, for Generalized-
Time — YYYYMMDDHHMMSSZ .

e NntfILLDS ASN Certificate IncorrectUseOfGeneralizedTime
Incorrect format of the contents of validity field of TBSCertificate ASN.1-object
[6, §4.1.2.5]. Date for the year <2050 should be coded using UTCTime [2, section IV, §A1.2].

e NntfLDS_ASN_Certificate_EmptyIlssuer
The data of issuer field of TBSCertificate ASN.1-object must include at least one
RelativeDistinguishedName element [6, §4.1.2.4].

e ntfLDS_ASN_Certificate_EmptySubject
The data of subject field of TBSCertificate ASN.1-object must include at least one
attribute -RelativeDistinguishedName element [6, §4.1.2.6].

e ntfLDS_ASN_Certificate_UnsupportedCriticalExtension
Certificate critical extensions (extensions contents of TBSCertificate ASN.1-object)
contain unsupported extensions [6, §4.2], [2, section IV, §A1.2].

e ntfLLDS_ASN_Certificate_ForcedDefaultCSCARole
Role of self-signed certificate is not designated in the mandatory extensions as CSCA
(keyUsage must contain keyCertSign, BasicConstraints — cA=true) [6, §4.2].

e ntfLDS_ASN Certificate_ForcedDefaultDSRole
Role of non self-signed certificate is not designated in the mandatory extensions as DS
(keyUsage must contain digitalSignature) [6, §4.2].

e ntfLLDS_ASN_Certificate_IncorrectIssuerSubjectDS
Role of self-signed certificate is designated in the mandatory extensions incorrectly
(keyUsage contains digitalSignature) [6, §4.2].

e ntfILDS ASN Certificate DuplicatingExtensions
Found multiple copies of the same certificate extension [6, §4.2].

e ntfLDS ICAO Certificate Version Missed
Missing mandatory version field of TBSCertificate ASN.1-object [6, §4.1], [2, sec-
tion IV, 8A1.1].

244 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

e ntfLDS ICAO Certificate Version Incorrect
Incorrect value of version field of TBSCertificate ASN.1-object — should contain the
number 2, indicating the version 2 certificate data [6, §4.1], [2, section IV, §A1.1].

e ntfLDS ICAO Certificate SN NonCompliant
Contents of serialNumber field of TBSCertificate ASN.1-object must be a positive inte-

ger of length no more than 20 octets and represented in the smallest number of octets [6,
§4.1.2.2], [31, §3.2.1].

e ntfLDS ICAO Certificate Issuer Country Missed
Missing mandatory Country attribute in issuer field of TBSCertificate ASN.T-object
[6, 84.1.2.4], [2, section IV, §A1.5].

e ntfLDS ICAO Certificate Issuer CommonName Missed
Missing mandatory CommonName attribute in issuer field of TBSCertificate ASN.1-
object [6, 84.1.24], [2, section IV, §A1.5].

e ntfILDS ICAO Certificate Issuer CountryNonCompliant
The country code in CountryName attribute in issuer field of TBSCertificate ASN.1-
object should be ecoded in two uppercase alphabetic ASCll-characters [6, §4.1.2.4,
§4.1.2.6], [2, section IV, §A1.5], [31, §3.2.1].

e ntfLDS ICAO Certificate Issuer SN NonCompliant
SerialNumber attribute in issuer field of TBSCertificate ASN.1-object must be
PrintableString [6, 84.1.24] [2, section IV, §A1.5], [31, §3.2.1].

e ntfIDS ICAO Certificate Issuer AttributeNonCompliant
Attributes in issuer field of TBSCertificate ASN.1-object must be Printable-
String or UTF8String [31, §3.2.1].

e ntfLDS ICAO Certificate Subject Country Missed
Missing mandatory Country attribute in subject field of TBSCertificate ASN.1-object
[6, 84.1.2.4], [2, section IV, §A1.5].

e ntfIDS ICAO Certificate Subject CommonName Missed
Missing mandatory CommonName attribute in subject field of TBSCertificate ASN.1-
object [6, 84.1.24], [2, section IV, §A1.5].

e ntfIDS ICAO Certificate Subject CountryNonCompliant
The country code in CountryName attribute in subject field of TBSCertificate ASN.1-
object should be ecoded in two uppercase alphabetic ASCll-characters [6, §4.1.2.4,
§4.1.2.6], [2, section IV, §A1.5], [31, §3.2.1].

e ntfIDS ICAO Certificate Subject SN NonCompliant
SerialNumber attribute in subject field of TBSCertificate ASN.1-object must be
PrintableString [6, 84.1.2.6], [2, section IV, §A1.5], [31, §3.2.1].

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 245

6. SDK SOFTWARE TOOLS

e ntfLDS ICAO Certificate Subject AttributeNonCompliant
Attributes in issuer field of TBSCertificate ASN.1-object must be Printable-
String or UTF8String [31, §3.2.1].

e ntfILDS ICAO Certificate IssuerSubject Country NonMatching
CountryName attributes in issuer and subject fields of TBSCertificate ASN.1-
object must be identical [31, §3.2.1].

e ntfLDS ICAO Certificate UsingNonCompliantData
TBSCertificate ASN.1-object contains unauthorized by ICAO elements (issuerUni-
queID or subjectUniquelID) [2, section IV, § A1.1].

e ntfILDS ICAO Certificate UnsupportedSignatureAlgorithm
signatureAlgorithnm field of Certificate ASN.1-object contains an identifier (OID) of
the unsupported digital signature algorithm [6, 84.1], [5, §2.2].

e ntfLDS ICAO Certificate UnsupportedPublicKeyAlgorithm
subjectPublicKeyInfo field of TBSCertificate ASN.1-object contains an identifier
(OID) of the unsupported public key algorithm [6, §4.1], [5, §2.3].

e ntfILDS ICAO Certificate MissedExtensions
Certificate critical extensions (extensions contents of TBSCertificate ASN.1-object)
do not contain all required elements [2, section IV, §A1.2].

e ntfILDS ICAO Certificate Validity
The certificate has expired, or its action has not yet begun.

e ntfLDS ICAO Certificate Ext UsingNonCompliantData
The list of extensions of TBSCertificate ASN.1-object contains elements that are not
allowed to use [6, 84.1], [2, section IV, §A1. 2], [31, §3.2.1].

e ntfILDS ICAO Certificate Ext KeyUsage Missed
Missing a mandatory KeyUsage certificate extension [6, §4.2.1.3], [2, section IV, §A1.2].

e ntfLDS ICAO Certificate Ext KeyUsage NotCritical
Mandatory KeyUsage certificate extension is not marked as critical [6, §4.2.1.3], [2, section IV,
§A1.2].

e ntfILDS ICAO Certificate Ext KeyUsage IncorrectData
Incorrect ASN.1-data of KeyUsage certificate extension [6, §4.2.1.3], [2, section IV, §A1.2].

e ntfLDS ICAO Certificate Ext BasicC Missed

Missing a mandatory BasicConstraints certificate extension [6, §4.2.1.9], [2, section IV,
§8A1.2].

e ntfIDS ICAO Certificate Ext BasicC IncorrectUsagel
The erroneous use of BasicConstraints certificate extension — use for DS-certificate [6,
§84.2.1.9], [2, section IV, §A1.2].

246 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

e ntfLDS ICAO Certificate Ext BasicC IncorrectUsage?2
The erroneous use of BasicConstraints certificate extension — not set a mandatory cA fea-
ture in combination with keyCertSign flag in KeyUsage extension [6, §4.2.1.9], [2, sec-
tion IV, 8A1.2].

e ntfLDS ICAO Certificate Ext BasicC NotCritical
Mandatory BasicConstraints certificate extension is not marked as critical [6, §4.2.1.9], [2,
section |V, §A1.2].

e ntfIDS ICAO Certificate Ext BasicC IncorrectData
Incorrect ASN.1-data of BasicConstraints certificate extension [6, §4.2.1.9].

e ntfLDS ICAO Certificate Ext BasicC PathLenC Missed
Missing a mandatory pathLenConstraint field of BasicConstraints certificate exten-
sion [6, §4.2.1.9], [2, section IV, §A1.2].

e ntfIDS ICAO Certificate Ext BasicC PathLenC Incorrect
Incorrect pathLenConstraint value of BasicConstraints certificate extension —
should contain 0 [6, §4.2.1.9], [35, R3-p1_v2_sIV_0038].

e ntfIDS ICAO Certificate Ext ExtKeyUsage NotCritical
ExtKeyUsage certificate extension is present, but not marked as critical [6, §4.2.1.12], [31,
§3.2.1], [34, §3.2].

e ntfLDS ICAO Certificate Ext ExtKeyUsage IncorrectUsage
The erroneous use of ExtKeyUsage certificate extension — use for CSCA- or DS-certificate [6,
§4.2.1.12], [31, §3.2.1], [34, §3.2].

e ntfIDS ICAO Certificate Ext ExtKeyUsage IncorrectData
Incorrect ASN.1-data of ExtKeyUsage certificate extension [6, §4.2.1.12].

e ntfIDS ICAO Certificate Ext AuthKeyID Missed
Missing a mandatory AuthorityKeyIdentifier certificate extension [2, section IV, §A1.2],
[6,84.2.1.1], [31, §3.2.1].

e ntfIDS ICAO Certificate Ext AuthKeyID IncorrectData
Incorrect ASN.1-data of AuthorityKeyIdentifier certificate extension [6, §4.2.1.1].

e ntfIDS ICAO Certificate Ext AuthKeyID KeyID Missed
Missing a mandatory keyIdentifier field of AuthorityKeyIdentifier certificate ex-
tension [6, §4.2.1.1], [31, §3.2.1].

e ntfIDS ICAO Certificate Ext SubjectKeyID Missed
Missing a mandatory SubjectKeyIdentifier certificate extension [6, §4.2.1.2], [2, sec-
tion IV, §A1.2], [31, §3.2.1].

e ntfLDS ICAO Certificate Ext SubjectKeyID IncorrectData
Incorrect ASN.1-data of SubjectKeyIdentifier certificate extension [6, 84.2.1.2].

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 247

6. SDK SOFTWARE TOOLS

e ntfLDS ICAO Certificate Ext PrivateKeyUP Missed
Missing a mandatory PrivateKeyUsagePeriod certificate extension [31, §3.2.1].

e ntfIDS ICAO Certificate Ext PrivateKeyUP IncorrectData
Incorrect ASN.1-data of PrivateKeyUsagePeriod certificate extension [31, §3.2.1].

e ntfILDS ICAO Certificate Ext PrivateKeyUP Empty
Empty PrivateKeyUsagePeriod certificate extension [31, §3.2.1].

e ntfLDS ICAO Certificate Ext SubjectAltName Missed
Missing a mandatory SubjectAltName certificate extension [6, §4.2.1.6], [31, §3.2.1].

e ntfLDS ICAO Certificate Ext SubjectAltName IncorrectData
Incorrect ASN.1-data of SubjectAltName -certificate extension [6, §4.2.1.6], [31, §3.2.1].

e ntfILDS ICAO Certificate Ext SubjectAltName Empty
Empty SubjectAltName certificate extension [6, §4.2.1.6], [31, §3.2.1].

e ntfILDS ICAO Certificate Ext SubjectAltName NonCompliant
A set of used fields in SubjectAltName certificate extension not correspond to the require-
ments of ICAO [6, §4.2.1.6], [31, §3.2.1].

e ntfILDS ICAO Certificate Ext SubjectAltName Critical
SubjectAltName certificate extension must not be marked as critical [6, §4.2.1.6], [31,
§3.2.11.

e ntfILDS ICAO Certificate Ext SubjectAltName DN Empty
Empty directoryName field in SubjectAltName certificate extension [6, §4.2.1.6], [31, §3.2.1].

e ntfLDS ICAO Certificate Ext SubjectAltName DN Incorrect
Missing a mandatory 1ocalityName attribute in directoryName field of SubjectAlt-
Name certificate extension [6, §4.2.1.6], [31, §3.2.1].

e ntfLDS ICAO Certificate Ext SubjectAltName DN NonCompliant
The use of unauthorized attributes (apart from localityName and stateOrProv-
inceName) in directoryName field of SubjectAltName certificate extension [6,
§4.2.1.6], [31, §3.2.1].

e ntfLDS ICAO Certificate Ext IssuerAltName Missed
Missing a mandatory IssuerAltName certificate extension [6, §4.2.1.7], [31, §3.2.1].

° nthDS_ICAO_Certificate_Ext_IssuerAltName_IncorrectData
Incorrect ASN.1-data of IssuerAltName certificate extension [6, 84.2.1.7], [31, §3.2.1].

e ntfILDS ICAO Certificate Ext IssuerAltName Empty
Empty IssuerAltName certificate extension [6, §4.2.1.7], [31, §3.2.1].

248 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

e ntfLDS ICAO Certificate Ext IssuerAltName NonCompliant
A set of used fields in TssuerAltName certificate extension not correspond to the require-
ments of ICAO [6, §4.2.1.7], [31, §3.2.1].

e ntfLDS ICAO Certificate Ext IssuerAltName Critical
IssuerAltName certificate extension must not be marked as critical [6, 84.2.1.7], [31, §3.2.1].

e ntfLDS ICAO Certificate Ext IssuerAltName DN Empty
Empty directoryName field in IssuerAltName certificate extension [6, §4.2.1.7], [31, §3.2.1].

e ntfIDS ICAO Certificate Ext IssuerAltName DN Incorrect
Missing a mandatory localityName attribute in directoryName field of Issu-
erAltName Ccertificate extension [6, §4.2.1.7], [31, §3.2.1].

e ntfIDS ICAO Certificate Ext IssuerAltName DN NonCompliant
The use of unauthorized attributes (apart from localityName and stateOrProv-
inceName) in directoryName field of IssuerAltName -certificate extension [6, §4.2.1.7],
[31, §3.2.1].

e ntfIDS ICAO Certificate Ext CSCA AltNames NonMatching
Contents of SubjectAltName and IssuerAltName fields of CSCA-certificate must be
identical [31, §3.2.1].

e ntfIDS ICAO Certificate Ext NameChange IncorrectData
Incorrect ASN.1-data of nameChange certificate extension [31, §3.2.2].

e ntfLDS ICAO Certificate Ext NameChange NonCompliant
nameChange certificate extension allowed for CSCA-link-certificates only [31, §3.2.2].

e ntfLDS ICAO Certificate Ext NameChange Critical
nameChange certificate extension must not be marked as critical [31, §3.2.2].

e ntfIDS ICAO Certificate Ext DocTypelList Missed
Missing a mandatory documentTypelList certificate extension [31, §3.2.2].

e ntfIDS ICAO Certificate Ext DocTypeList IncorrectData
Incorrect ASN.1-data of documentTypeList certificate extension [31, §3.2.2].

e ntfLDS ICAO Certificate Ext DocTypelist Version
Incorrect version value of documentTypelList certificate extension — should contain 0
[31, 83.2.2].

e NntfILDS_ASN_Certificate_IncorrectIssuerSubjectDS
Role of self-signed certificate is designated in the mandatory extensions incorrectly
(keyUsage contains digitalSignature) [6, §4.2].

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 249

6. SDK SOFTWARE TOOLS

e ntfLDS ICAO Certificate Ext DocTypelList DocTypes
Incorrect content of docTypeList list items of documentTypeList certificate extension —
should contain one- or two-letter codes for document types [31, §3.2.2].

e ntfLDS ICAO Certificate Ext DocTypelList DocTypes Empty
Empty docTypeList list of documentTypeList certificate extension [31, §3.2.2].

e ntfLDS ICAO Certificate Ext DocTypeList NonCompliant
docTypeList certificate extension allowed for DS-certificates only [31, §3.2.2].

e ntfILDS ICAO Certificate Ext NameChange Critical
docTypeList certificate extension must not be marked as critical [31, §3.2.2].

e ntfIDS ICAO Certificate Ext CertPolicies IncorrectData
Incorrect ASN.1-data of certificatePolicies certificate extension [6, §4.2.1.4], [31, §3.2.1].

e ntfLDS ICAO Certificate Ext CertPolicies Empty
Empty certificatePolicies certificate extension [6, §4.2.1.4], [31, §3.2.1].

e ntfILDS ICAO Certificate Ext CertPolicies PolicyID Missed
Missing a mandatory policyIdentifier field of certificatePolicies certificate
extension [6, §4.2.1.4], [31, §3.2.1].

e ntfILDS ICAO Certificate Ext CRLDistPoint Missed
Missing a mandatory CRLDistributionPoints certificate extension [6, §4.2.1.13],
[31, §3.2.1].

e ntfLDS ICAO Certificate Ext CRLDistPoint IncorrectData
Incorrect ASN.1-data of CRLDistributionPoints certificate extension [6, §4.2.1.13],
[31, §3.2.1].

e ntfLDS ICAO Certificate Ext CRLDistPoint Empty
Empty CRLDistributionPoints certificate extension [6, §4.2.1.13], [31, §3.2.1].

e ntfLDS ICAO Certificate Ext CRLDistPoint PointMissed
Empty element in CRLDistributionPoints certificate extension [6, 84.2.1.13], [31, §3.2.1].

e ntfILDS ICAO Certificate Ext Optional Critical
Unsupported critical certificate extension usage [31, §3.2.1].

° nthDS_ICAO_COM_LDS_Version_Incorrect
Incorrect format or contents of the LDS version in EF.COM [2, section Ill, 814, §A.13.1]. Ver-
sion 1.7 is expected (value '0170’).

e ntfLDS ICAO COM LDS Version Missing
Missing LDS version field in EF.COM [2, section Ill, §14, §A.13.1].

250 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

e ntfLDS ICAO COM Unicode Version Incorrect
Incorrect format or contents of the Unicode version in EF.COM [2, section Ill, § 14, 8A.13.1].

e ntfILDS ICAO COM Unicode Version Missing
Missing Unicode version field in EF.COM [2, section IIl, § 14, §A.13.1].

e ntfLDS ICAO COM DGPM Incorrect
Incorrect format or contents of the Data Group Presence Map (DGPM) in EF.COM [2, sec-
tion 111, §14, 8A.13.1].

e ntfLDS ICAO COM DGPM Missing
Missing DGPM field in EF.COM [2, section Ill, § 14, §A.13.1].

e ntfLDS ICAO COM DGPM Unexpected
Incorrect DGPM contents in EF.COM [2, section Ill, § 14, §8A.13.1].

e ntfIDS ICAO Application LDSVersion Unsupported
Unsupported LDS version, registered in EF.COM or EF.SOD [2, section I, §14, §A.13.1],
[31, 82.2].

e ntfILDS ICAO Application UnicodeVersion Unsupported
Unsupported Unicode version, registered in EF.COM or EF.SOD [2, section Ill, §14, §A.13.1],
[31, 82.2].

e ntfIDS ICAO Application LDSVersion Inconsistent
LDS version mismatch, registered in EF.COM and EF . SOD [2, section Ill, §14, §A.13.1], [31, §2.2].

e ntfLDS ICAO Application UnicodeVersion Inconsistent
Unicode version mismatch, registered in EF.COM and EF.SOD [2, section Ill, §14, §A.13.1],
[31, 82.2].

e ntfLDS ASN SignedData OID Incorrect
Incorrect identifier in contentType field of ContentInfo ASN.1-object, containing data
of document security object. szOID_RSA_signedData identifier is expected, which de-
fines the contents as Signedbata [7, §3, §5.1].

e ntfLDS ASN SignedData Version Incorrect
Incorrect version value of SignedData ASN.1-object, containing data of document securi-
ty object. Valid values are 1, 3,4, 5 [7, §3, §5.1].

e ntfLDS ASN SignedData ContentOID Incorrect
Incorrect identifier in encapContentInfo.eContentType field of SignedData ASN.1-
object, containing data of document security object.
szOID ICAO MRTD Security LDSSecurityObject or
szOID LDSSecurityObject identifiers are expected, which defines the contents as
LDSSecurityObject [2, section |V, §A3.2].

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 251

6. SDK SOFTWARE TOOLS

e ntfLDS ICAO SignedData Version Incorrect
Incorrect value in version field of SignedData ASN.1-object, containing data of the
document security object [7, §5.1]. Value 3 is expected [2, section IV, §A3.1], [24, part 3,
§A.1.2.5].

e ntfLDS ICAO SignedData DigestAlgorithms Empty
Empty list of hash algorithms in digestAlgorithms field of SignedData ASN.1-object,
containing data of the document security object [7, §5.1], [2, section IV, §A3.1], [24, part 3,
§A.1.2.5].

e ntfLDS ICAO SignedData DigestAlgorithms Unsupported
digestAlgorithms list of SignedData ASN.1-object contains identifiers of unsupport-
ed hash algorithms [7, §5.1], [2, section IV, § A3.1], [24, part 3, 8§A.1.2.5].

e ntfILDS ICAO SignedData SignerInfos MultipleEntries
Multiple digital signature data objects found in the document security object (in sign-
erInfos list of SignedData ASN.1-object [7, §5.1]). It is expected the presence of a sin-
gle element [2, section IV, §A3.1].

e ntfILDS ICAO SignedData Certificates Missed
Missing certificates listin SignedData ASN.1-object [7, §5.1], [2, section IV, §A3.1].

e ntfILDS ICAO SignedData Certificates Empty
Empty certificates listin SignedData ASN.1-object [7, §5.1], [2, section IV, §A3.1].

e ntfILDS ICAO SignedData CRLs IncorrectUsage
The presence of unauthorized crls list in SignedData ASN.1-object [7, §5.1], [2, sec-
tion IV, 8A3.1].

e ntfILDS ICAO LDSObject IncorrectContentOID
Incorrect format of the contents of encapContentInfo field of SignedbData ASN.1-
object [7, §5.1] for the document security object from EF.SOD (see section 4.3.1). LDS-
SecurityObject object should be used to indicate encapContentInfo contents [2,
section 1V, §A3.2].

e ntfLDS ICAO LDSObject DGNumber Incorrect
dataGroupHashValues list of LDSSecurityObject ASN.1-object contains incorrect
data group identifiers [2, section 1V, §A3.2]. Values in the range 1-16 are allowed.

e ntfLDS ICAO LDSObject DGHash Missing
dataGroupHashValues list of LDSSecurityObject ASN.1-object contains incomplete
set of data group identifiers, presence of which is defined by the contents of EF.coM [2,
section IV, §A3.2].

e ntfILDS ICAO LDSObject DGHash Extra
dataGroupHashValues list of LDSSecurityObject ASN.1-object contains data group
identifier not present in EF.COM [2, section IV, §A3.2].

252 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

e ntfLDS ICAO LDSObject Version Incorrect
Incorrect value in version field of LDSSecurityObject ASN.1-object. The 0 value is
expected [2, section IV, §A3.2].

e ntfLDS ICAO MasterList Version Incorrect
Incorrect value in version field of CscaMasterList ASN.1-object. The 0 value is ex-
pected [34, §3.1.2].

e nfLDS ICAO DeviationList Version Incorrect
Incorrect value in version field of DeviationList ASN.1-object. The 0 value is ex-
pected [34, §3.1.2].

e ntfILDS BSI DefectList Version Incorrect
Incorrect value in version field of DefectList ASN.1-object. The 0 value is expected
(36, A.1].

e ntfILDS BSI BlackList Version Incorrect
Incorrect value in version field of BlackList ASN.1-object. The 0 value is expected [36,
B.1].

e ntfIDS ASN SignerInfo Version Incorrect
version field of SignerInfo ASN.1-object with the data of document security object
digital signature [7, § 5.3] contains incorrect value. 1 and 3 values are allowed.

e ntfILDS ASN SignerInfo SID IncorrectChoice
Incompliance between version value and the choice of representation of the contents of
sid field of SignerInfo ASN.1-object with data of document security objectdigital sig-
nature [7, §5.3].

e ntfILDS ASN SignerInfo SID DigestAlgorithmNotListed
digestAlgorithm from SignerInfo is not included in digestAlgorithms list of
SignedData object [7, §5.3].

e ntfILDS ASN SignerInfo MessageDigestAttr Missing
signedAttrs list of attributes of SignerInfo ASN.1-object contains no MessageDi-
gest element [7, 85.3, §11.2].

e ntfIDS ASN SignerInfo MessageDigestAttr Data
Incorrect data format of MessageDigest element in signedAttrs list of attributes of
SignerInfo ASN.1-object [7, §5.3, §11.2].

e ntfLDS ASN SignerInfo MessageDigestAttr Value
Incorrect contents of MessageDigest element in signedAttrs list of attributes of
SignerInfo ASN.1-object [7, §5.3, §11.2] (when compared with the actual hash value).

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 253

6. SDK SOFTWARE TOOLS

e ntfLDS ASN SignerInfo ContentTypeAttr Missing
signedAttrs list of attributes of SignerInfo ASN.1-object contains no ContentType
element [7, §5.3, §11.1].

e ntfLDS ASN SignerInfo ContentTypeAttr Data
Incorrect data format of ContentType element in signedAttrs list of attributes of
SignerInfo ASN.1-object [7, §5.3, §11.1].

e ntfLDS ASN SignerInfo ContentTypeAttr Value
Incorrect contents of ContentType element in signedAttrs list of attributes of Sign-
erInfo ASN.1-object (must contain a value from SignedDa-
ta.encapContentInfo.eContentType) [7, §5.3, §11.1].

e ntfLDS ASN SignerInfo SigningTimeAttr Missing
signedAttrs list of attributes of SignerInfo ASN.1-object contains no SigningTime
element [7, §5.3, §11.3], [34, §3.1.1].

e ntfLDS ASN SignerInfo SigningTimeAttr Data
Incorrect data format of SigningTime element in signedAttrs list of attributes of
SignerInfo ASN.1-object [7, §5.3, §11.3], [34, §3.1.1].

e ntfILDS ASN SignerInfo SigningTimeAttr Value
Incorrect contents of SigningTime element in signedAttrs list of attributes of Sign-
erInfo ASN.1-object [7, §5.3, §11.3], [34, §3.1.1].

e ntfILDS ASN SignerInfo ListContentDescriptionAttr Missing
signedAttrs list of attributes of SignerInfo ASN.1-object for Deviation-
List/BlackList contains no ListContentDescription element [36, C.1].

e ntfIDS ASN SignerInfo ListContentDescriptionAttr Data
Incorrect data format of ListContentDescription element in signedAttrs list of
attributes of SignerInfo ASN.1-object [36, C.1].

e ntfILDS Auth SignerInfo Certificate Validity
DS-certificate is expired (see section 5.5.2).

e ntfILDS Auth SignerInfo Certificate RootIsNotTrusted
No trust to the source of the DS-certificate (see section 5.5.2).

e ntfLDS Auth SignerInfo Certificate CantFindCSCA
CSCA-certificate not found (see section 5.5.2).

e ntfLDS Auth SignerInfo Certificate Revoked
Certificate revoked (see section 5.5.2).

e ntfILDS Auth SignerInfo Certificate Signaturelnvalid
DS-certificate signature verification failed (see sections 4.8.1, 5.8.12).

254 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

e NntfI.DS_UnsupportedImageFormat
Unrecognized graphic field image format.

e ntfLDS_MRZ_DocumentType_Unknown
EF.DG1 contents remark — unknown document type.

e ntfILDS_MRZ_IssuingState_SyntaxError
EF.DG1 contents remark — document issuing country field syntax error.

e NntfILLDS MRZ Name_IsVoid
EF.DG1 contents remark — empty name field.

e ntfLLDS_MRZ Number_IncorrectChecksum

EF.DG1 contents remark — incorrect document number field check sum.

e ntfILDS_MRZ Nationality_SyntaxError
EF.DG1 contents remark — nationality field syntax error.

e ntfLDS_MRZ_DOB_SyntaxError
EF.DG1 contents remark — date of birth field syntax error.

e ntfLLDS MRZ_DOB_Error
EF.DG1 contents remark — date of birth field error.

e ntfLLDS MRZ_DOB_IncorrectChecksum
EF.DG1 contents remark — incorrect date of birth field check sum.

e NntfLLDS_MRZ_Sex_Incorrect
EF.DG1 contents remark — not allowed contents of the field “Sex”.

e ntfLLDS_MRZ_DOE_SyntaxError
EF.DG1 contents remark — date of expiry syntax error.

e ntfLDS_MRZ_DOE_Error
EF.DG1 contents remark — date of expiry field error.

e NntfLLDS_MRZ_DOE_IncorrectChecksum
EF.DG1 contents remark — incorrect date of expiry field check sum.

e ntfILDS_MRZ OptionalData_IncorrectChecksum
EF.DG1 contents remark — incorrect optional data field check sum.

e NntfLLDS_MRZ_IncorrectChecksum
EF.DG1 contents remark — incorrect overall MRZ check sum.

e ntfLLDS MRZ_Incorrect
Additional full check of MRZ contents failed (see section 5.8.6).

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021

255

6. SDK SOFTWARE TOOLS

e ntfILDS_Biometrics_FormatOwner_Missing
Mandatory FormatOwner field absent in the BHT (see sections 5.8.10, 6.3.22). Low order
WORD of the notification code contains the identifier of the biometric data source file (one
of eRFID DataFile_Type values).

e ntfLDS Biometrics FormatOwner_ Incorrect
Incorrect contents of FormatOwner field of the BHT (see sections 5.8.10, 6.3.22). fown-
ISO_IEC_JTC_1_SC_37 value is expected (see section 6.4.19). Low order WORD of the noti-
fication code contains the identifier of the biometric data source file (one of
eRFID DataFile_Type values).

e ntfILDS_Biometrics_FormatType_Missing
Mandatory field with the description of the record format is absent in the BHT data (see
sections 5.8.10, 6.3.22). Low order WORD of the notification code contains the identifier of
the biometric data source file (one of eRFID DataFile_Type values).

e ntfLDS_Biometrics_FormatType_Incorrect
Biometric record format given in the BHT does not correspond to the type of the biometric
data group (see section 5.8.10, 6.3.22). Low order WORD of the notification code contains
the identifier of the biometric data source file (one of eRFID DataFile_Type values).

e ntfILDS_Biometrics_Type_Incorrect
Biometric data type of the BHT does not correspond to the type of the biometric data
group (see section 5.8.10, 6.3.22). Low order WORD of the notification code contains the
identifier of the biometric data source file (one of eRFID DataFile_Type values).

e ntfILDS_Biometrics_SubType_Missing — mandatory field with the description
Of biometric data subtype is absent in the BHT data (see sections 5.8.10, 6.3.22). Low order
WORD of the notification code contains the identifier of the biometric data source file (one
of eRFID DataFile_Type values).

e ntfILDS_Biometrics_SubType_Incorrect
BHT contains incorrect value of biometric data subtype (see sections 5.8.10, 6.3.22). Low
order WORD of the notification code contains the identifier of the biometric data source file
(one of eRFID DataFile_Type values).

e ntfILLDS_Biometrics_BDB_Image_Missing
BHT or image objects not found in the data of the information group. Low order WORD of
the notification code contains the identifier of the biometric data source file (one of
eRFID DataFile_Type values).

e ntfLLDS_Biometrics BDB_FormatID Incorrect
Text format identifier does not correspond to the type of biometric data group (see sec-
tions 5.8.10, 6.3.22). Low order WORD of the notification code contains the identifier of the
biometric data source file (one of eRFID_DataFile_Type values).

256 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

e ntfLDS_Biometrics BDB Version_Incorrect
Unsupported biometric data format version (see sections 5.8.10, 6.3.22). Low order WORD of
the notification code contains the identifier of the biometric data source file (one of
eRFID DataFile_Type values).

e ntfILDS_Biometrics_BDB_Datalength_Incorrect
Incorrect length of biometric data. Low order WORD of the notification code contains the
identifier of the biometric data source file (one of eRFID DataFile_Type values).

e NntfILDS Biometrics BDB Data_Gender
Incorrect gender of the DO in the biometric data (see sections 5.8.10, 6.3.25). Low order
WORD of the notification code contains the identifier of the biometric data source file (one
of eRFID DataFile_Type values).

e ntfILDS_Biometrics_BDB_Data_EyeColor
Incorrect eye color of the DO in the biometric data (see sections 5.8.10, 6.3.25). Low order
WORD of the notification code contains the identifier of the biometric data source file (one
of eRFID DataFile_Type values).

e ntfLLDS Biometrics_BDB _Data_HairColor
Incorrect hair color of the DO in the biometric data (see sections 5.8.10, 6.3.25). Low order
WORD of the notification code contains the identifier of the biometric data source file (one
of eRFID DataFile_Type values)

e ntfIDS Biometrics BDB Data PoseAngle Yaw,
ntfLDS Biometrics BDB Data PoseAngle Pitch,
ntfILDS Biometrics BDB Data PoseAngle Roll

Incorrect pose in the biometric data (see sections 5.8.10, 6.3.26). Low order WORD of the
notification code contains the identifier of the biometric data source file (one of
eRFID DataFile_Type values).

e ntfLDS Biometrics BDB Data PoseAngleU Yaw,
ntfLDS Biometrics BDB Data PoseAngleU Pitch,
ntfILDS Biometrics BDB Data PoseAngleU Roll

Incorrect pose of uncertaincy in the biometric data (see sections 5.8.10, 6.3.26). Low order
WORD of the notification code contains the identifier of the biometric data source file (one
of eRFID DataFile_Type values).

e ntfI.DS_Biometrics_BDB_Data_FaceImageType
Incorrect image type in the biometric data (see sections 5.8.10, 6.3.28). Low order WORD of
the notification code contains the identifier of the biometric data source file (one of
eRFID DataFile_Type values).

e ntfI.DS_Biometrics_BDB_Data_ImageDataType
Incorrect image data type in the biometric data (see sections 5.8.10, 6.3.28). Low order
WORD of the notification code contains the identifier of the biometric data source file (one
of eRFID_DataFile_Type values).

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 257

6. SDK SOFTWARE TOOLS

e ntfILLDS_SI_PACE_Info_UnsupportedStdParameters
PACEInfo refers to the unsupported set of standard public key parameters [23, §3.1.1],
[24, part 3, 8A.1.1.1].

e ntfILDS_SI_PACE_Info_DeprecatedVersion
Deprecated version in PACEInfo (value 2 is expected) [23, §3.1.3], [24, part 3, §A.1.1.1].

e ntfILDS_SI_PACE_DomainParams_UsingStdRef
PACEDomainParameterInfo should not contain references to the standard public key
parameters [23, §5.3.2, §5.7.1], [24, part 3, §A.2.1].

e ntfIDS_SI_PACE_DomainParams_UnsupportedAlgorithm
Unsupported public key algorithm in domainParameter field of PACEDomainParame-
terInfo object [23, §5.3.2], [24, part 3, §A.2.1].

e ntfLLDS_SI_CA_Info_IncorrectVersion
Unsupported CA version in version field of ChipAuthenticationInfo object [24,
part 3, 8A.1.1.2]. Values 1 or 2 are allowed.

e ntfLDS_SI_CA_PublicKey UnsupportedAlgorithm
Unsupported CA public key algorithm in publicKey field of ChipAuthentication-
PublicKeyInfo object [24, part 3, §A.1.1.2, §A4].

e ntfI.DS_SI_CA_DomainParams_UnsupportedAlgorithm
Unsupported CA public key algorithm parameters in domainParameter field of ChipAu-
thenticationDomainParameterInfo object [24, part 3, 8A.1.1.2, §A4].

e ntfLLDS_SI_TA _Info_IncorrectVersion
Unsupported TA version in version field of TerminalAuthenticationInfo object
[24, part 3, §A.1.1.3]. Values 1 or 2 are allowed.

e ntfLDS SI TA Info FileIDForVersion2
Use of efcvCa field in TerminalAuthenticationInfo object for TA, version 2
[24, part 3, 8A.1.1.3]. Presence of efCvCA is allowed only for the version 1.

e ntfILDS SI elIDSecurity UnsupportedDigestAlgorithm
Unsupported hash algorithm in eIDSecurityInfo object [24, part 3, §A.1.1.6].

e ntfLLDS_SI RI_Info_IncorrectVersion
Unsupported RI version in version field of RestrictedIdentificationInfo object
[24, part 3, §A.1.1.4]. Only the value 1 is allowed.

e ntfILDS_SI_RI_DomainParams_UnsupportedAlgorithm
Unsupported RI public key algorithm parameters in domainParameter field of Re-
strictedIdentificationDomainParameterInfo object [24, part 3, §A.1.1.4].

e ntfIDS SI AA Info IncorrectVersion

258 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

For LDS version 1.8 and higher. Unsupported AA version in version field of Ac-
tiveAuthenticationInfo object [31, §5.2.2]. Value 1 is allowed.

e ntfLDS SI AA Info UnsupportedAlgorithm
For LDS version 1.8 and higher. Unsupported digital signature algorithm in signature-
Algorithm field of ActiveAuthenticationInfo object [31, §5.2.2].

e ntfLDS SI AA Info InconsistantAlgorithmReference
For LDS version 1.8 and higher. Inconsistance between AA digital signature algorithm from
signatureAlgorithm field of ActiveAuthenticationInfo object [31, §5.2.2] and
AA public key algorithm [2, §A4].

e ntfILDS_SI_Storage_PACE_Info_NotAvailable
No PACEInfo was found in SecurityInfos data [23, §5.3], [24, part 3, §A.1.1.1].

e ntfLLDS_SI_Storage_PACE_Info_NoStdParameters
No PACEInfo referring to the standard set of public key parameters was found in Secu-
rityInfos data [23, §5.3], [24, part 3, §A.1.1.1].

e ntfILDS_SI_Storage_PACE_Info_NoMatchingDomainParams
No PACEDomainParameterInfo corresponding to PACEInfo, referring to the non-
standard set of public key parameters, was found in SecurityInfos data [23, §3.1.1], [24,
part 3, 8A.1.1.1].

e ntfIDS_SI_Storage_CA_Info_NotAvailable
No ChipAuthenticationInfo was found (for version 2) [24, part 3, §A.1.1.2, 8A.1.2.1].

e NntfI.DS_SI_Storage_CA_DomainParams_NoRequiredOption
No ChipAuthenticationDomainParameterInfo, referring to the standard set of
public key parameters — for version 2, or to the explicitly defined public key parameters -
for version 1, was found in SecurityInfos data [24, part 3, §A.2.1.3].

e ntfILDS_SI_Storage_CA_DomainParams_NotAvailable
No ChipAuthenticationDomainParameterInfo (for version 2) was found in Secu-
rityInfos data [24, part 3, §A.1.1.2, §A.1.2.1].

e ntfLDS_SI_Storage_CA_AnonymousInfos
If several CA keys supported keyId field must be used in all SecurityInfos [24, part 3,
§A.1.1.2].

e ntfILLDS_SI_Storage_CA_Info_NoMatchingDomainParams
No ChipAuthenticationDomainParameterInfo, corresponding to ChipAuthenti-
cationInfo object by keyId identifier, was found in SecurityInfos data [24, part 3,
SA.1.2.1].

e ntfIDS_SI_Storage_CA_Info_NoMatchingPublicKey
No ChipAuthenticationPublicKeyInfo, corresponding to ChipAuthentication-

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 259

6. SDK SOFTWARE TOOLS

Info by keyId identifier, object was found in SecurityInfos data [24, part 3, §A.1.2.2,
§A.1.2.3].

e ntfILDS_SI_Storage_CA_IncorrectInfosQuantity
Different number of ChipAuthenticationPublicKeyInfo
and ChipAuthenticationInfo objects [24, part 3, §8A.1.2.2, §A.1.2.3]. There must be a
strict correspondence.

e ntfILDS_SI_Storage_TA_Info_NotAvailable
No TerminalAuthenticationInfo was found (for version 2) in SecurityInfos data
[24, part 3, 8§A.1.1.3, 8A.1.2.1].

e NntfILDS_SI_Storage_CardInfolocator_ MultipleEntries
Multiple CardInfoLocator objects were found in SecurityInfos data [24, part 3,
§A.1.1.5]. Only one is allowed.

e ntfILDS SI Storage eIDSecuritylInfo MultipleEntries
Multiple eIDSecurityInfo objects [24, part 3, §A.1.1.6] were found in SecurityInfos
data. Only one is allowed.

e ntfLDS_SI_Storage_PrivilegedTI_MultipleEntries
Multiple PrivilegedTerminalInfo objects [24, part 3, § A.1.1.7] were found in Secu-
rityInfos data. Only one is allowed.

e ntfLDS_SI_Storage_PrivilegedTI_IncorrectUsage
PrivilegedTerminalInfo objects usage in EF.CardSecurity is not allowed [24,
part 3, §A.1.2.2].

e ntfILDS_STI_Storage_RI_DomainParams_MultipleEntries
Multiple RestrictedIdentificationDomainParameterInfo objects [24, part 3,
§A.1.1.4] were found in SecurityInfos data. Only one is allowed.

e ntfILDS SI Storage PACEInfos NonConsistant
Non-consistant EF.CardAcess and DG14 [23, §5.4].

e ntfLLDS_CVCertificate_Profile_IncorrectVersion
Unsupported version of CV-certificate profile [24, part 3, §C.1]. Only the value 0 is allowed.

e ntfILDS CVCertificate Validity
CV-certificate is expired.

e ntfILDS CVCertificate NonCVCADomainParameters
DV-certificates and terminal certificates must not contain explicitly defined EC public key
parameters [24, part 3, §D.3.3].

260 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

e ntfLDS CV Certificate PrivateKey IncorrectVersion
Incorrect version of the private key data for the terminal authentication procedure [10]
(see section 5.5.3).

e ntfIDS TA PACEStaticBindingUsed
Terminal authentication procedure was carried out using an algorithm with a static binding
with PACE [24, part 1, §3.5] (see section 5.8.15).

e ntfIDS Auth MLSignerInfo Certificate Validity
MLS-certificate is expired (see section 5.5.2). Marks all certificates contained in the checked
master list.

e ntfLDS Auth MLSignerInfo Certificate RootIsNotTrusted
No trust to the source of the MLS-certificate (see section 5.5.2). Marks all certificates con-
tained in the checked master list.

e ntfILDS Auth MLSignerInfo Certificate CantFindCSCA
CSCA-certificate for MLS-certificate digital signature verification is not found (see section
5.5.2). Marks all certificates contained in the checked master list.

e ntfIDS Auth MLSignerInfo Certificate Revoked
MLS-certificate revoked (see section 5.5.2). Marks all certificates contained in the checked
master list.

e ntfIDS Auth MLSignerInfo Certificate Signaturelnvalid
MLS-certificate signature verification failed (see sections 4.8.1). Marks all certificates con-
tained in the checked master list.

6.4.44. eRFID ErrorCodes

eRFID_ErrorCodes enumeration contains a set of error codes returned by the MCL func-
tions or transferred to the user application by the callback-function.

enum eRFID_ErrorCodes

{

RFID Error NoError = 0x00000001,
RFID Error AlreadyDone = 0x00000002,
RFID Error Failed = Oxffffffff,
RFID Error NoChipDetected = 0x80010001,
RFID Error NotAvailable = 0x80010002,
RFID Error InvalidParameter = 0x80010004,
RFID Error NotInitialized = 0x80010005,
RFID Error NotEnoughMemory = 0x80010006,
RFID Error InvalidDirectory = 0x80010008,
RFID Error UnknownCommand = 0x800100009,
RFID Error FileIOError = 0x80010004,
RFID Error Busy = 0x8001000B,
RFID Error OldFirmware = 0x8001000c¢C,

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 261

6. SDK SOFTWARE TOOLS

RFID Error PCSC Failed = 0x80020000,
RFID Error PCSC ReaderNotAvailable = 0x80020001,
RFID Error PCSC CantConnectCard = 0x80020002,
RFID Error PCSC CardIsNotConnected = 0x80020003,

RFID Error PCSC OperationCancelled = 0x80020004,

RFID Error PCSC CardIsBusy = 0x80020005,
RFID Error PCSC FailedSCard = 0x80020006,
RFID Error PCSC_ExtLe Failed = 0x80020010,
RFID LAYER6 SECURITY MANAGER = 0x86000000,
RFID LAYER6 APP SELECTION FAILURE = 0x86000001,
RFID LAYER6 MUTUAL AUTH MAC FAIL = 0x86000100,
RFID LAYER6 MUTUAL AUTH ENC FAIL = 0x86000101,
RFID LAYER6 MUTUAL AUTH FAILURE = 0x86000102,
RFID LAYER6 SM DOSE MISSING = 0x86000200,
RFID LAYER6 SM DO87 MISSING = 0x86000201,
RFID LAYER6 SM D099 MISSING = 0x86000202,
RFID LAYER6 SM MAC INCORRECT = 0x86000203,
RFID LAYER6 SM D087 INCORRECT = 0x86000204,
RFID LAYER6 NON TLV RESPONSE DATA = 0x86000300,
RFID LAYER6 WRONG RND ICC LENGTH = 0x86000301,
RFID LAYER6 INT AUTH FAILURE = 0x86000302,
FID LAYER6 MSE SET KAT FAILURE = 0x86000303,
RFID LAYER6 MSE SET DST FAILURE = 0x86000304,
RFID LAYER6 PSO CERTIFICATE FAILURE = 0x86000305,

RFID LAYER6 MSE SET AT FAILURE = 0x86000306,

RFID LAYER6 GET CHALLENGE FAILURE = 0x86000307,
RFID LAYER6 EXT AUTH FAILURE = 0x86000308,
RFID_LAYER6_GENERAL_AUTH_FAILURE = 0x86000309,
RFID LAYER6 FILE NOT FOUND = 0x80006A82,
RFID LAYER6 FILE EOF1 = 0x80006282,
RFID LAYER6 FILE EOF2 = 0x80006B00,
RFID_LAYER6_INCORRECT_PARAMS = 0x80006A80,
RFID LAYER6 NO REFERENCE DATA = 0x80006A88,
RFID LAYER6 PWD SUSPENDED = 0x800063C1,
RFID LAYER6 PWD BLOCKED = 0x800063CQ0,
RFID LAYER6 PWD DEACTIVATED = 0x80006283,
RFID LAYER6 PWD BLOCKED 2 = 0x80006983,
RFID LAYER6 PWD DEACTIVATED 2 = 0x80006984,
RFID LAYER6 PWD SUSPENDED 2 = 0x80006985,
RFID LAYER6 PWD FAILED = 0x801063C0,
RFID Error NotPerformed = 0x83000000,
RFID Error Session IsClosed = 0x83000001,
RFID Error Session Terminal UnsupportedOperation = 0x83000002,
RFID Error Session TerminalType Unknown = 0x83000010,
RFID Error Session TerminalType BadCertificate = 0x83000011,
RFID Error Session TerminalType NotSet = 0x83000012,
RFID Error Session ProcedureType Unknown = 0x83000013,
RFID Error Session ProcedureType Unsupported = 0x83000014,
RFID Error Session ProcedureType NotSet = 0x83000015,

262 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

}s

RFID Error Session AccessKey UnknownType

RFID Error Session AccessKey UnsupportedSMType
RFID Error Session AccessKey IncorrectSMType
RFID Error Session AccessKey Restricted

RFID Error Session AccessKey IncorrectData
RFID Error Session AccessKey NotsSet

RFID Error Session PwdManagement NotAuthorized
RFID Error Session AccessControl UnknownType
RFID Error Session AccessControl RequiresSM
RFID Error Session AccessControl RequiresPACE

RFID Error Session AccessControl RequiresCAKeys=

RFID Error Session AccessControl RequiresTA
RFID Error Session AccessControl RequiresCA

RFID Error Session AccessControl IncorrectCptionCA

RFID Error Session AccessControl CA Failed
RFID Error Session AccessControl TA Failed
RFID Error Session AccessControl AA Failed
RFID Error Session AccessControl RI Failed
RFID Error Session PA SignatureCheckFailed
RFID Error Session PA HashCheckFailed

RFID Error Session InvalidAuxData DateOfExpiry
RFID Error Session InvalidAuxData DateOfBirth
RFID Error Session InvalidAuxData CommunityID

RFID Error Session eSign RequiresAppSelection
RFID Error Session eSign PIN NotSet
RFID Error Session eSign PIN NotVerified

RFID Error Session IncorrectData

RFID Error Session File NotEnoughData

RFID Error Session File IncorrectData

RFID Error Session File UnexpectedData

RFID Error Session File Contents UnexpectedData
RFID Error Session File WrongTag

RFID Error Session File CantUseData

RFID Error Session File CantReadData

RFID Error Session File AccessDenied

The following code value:

e RFID _Error NoError

Successful operation

e RFID Error_AlreadyDone

Requested operation has already been performed

e RFID Error_Failed

Error of operation execution (common case)

= 0x83000016,

0x83000017,
0x83000018,

= 0x83000019,

0x8300001A,
0x8300001B,

= 0x8300001¢C,

0x83000020,

= 0x83000021,

= 0x83000022,
0x83000023,
= 0x83000024,
= 0x83000025,

0x83000026,

0x83000027,
0x83000028,
0x83000029,
0x8300002A,
0x83000030,
0x83000031,

0x83000040,
0x83000041,
0x83000042,

0x83000050,
0x83000051,
0x83000052,

0x83000060,

0x83010000,
0x83020000,
0x83030000,
0x83040000,
0x83050000,
0x83060000,
0x83070000,
0x83080000,

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021

263

6. SDK SOFTWARE TOOLS

e RFID Error_NoChipDetected
RFID-chip is absent in the scope of the reader antenna

e RFID_Error_NotAvailable
Requested operation unavailable

e RFID Error_InvalidParameter
Incorrect command parameter

e RFID Error_ NotInitialized
SDK control library was not initialized

e RFID_Error_NotEnoughMemory
Insufficient memory for command execution

e RFID Error_InvalidDirectory
Incorrect directory name

e RFID_Error_UnknownCommand
Unknown command

e RFID Error FileIOError
File input/output error

e RFID Error_Busy
SDK control library is busy. Execution of the command is impossible

e RFID_Error_OldFirmware
It is required to update reader’s firmware (see section 5.3)

e RFID_Error_PCSC_Failed
Error of command of data exchange with RFID-chip execution (common case)

e RFID_Error_PCSC_ReaderNotAvailable
RFID-chip reader unavailable

e RFID Error_PCSC_CantConnectCard
Failed to connect with RFID-chip

e RFID Error PCSC_CardIsNotConnected
No active RFID-chip

e RFID Error_PCSC_OperationCancelled
Data reading operation cancelled by the user

e RFID_Error_PCSC_CardIsBusy
Data exchange with RFID-chip takes place. Execution of the command is impossible

264 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

e RFID Error_PCSC_FailedSCard
Error of SCard service when data exchanging with RFID-chip

e RFID_Error_PCSC_ExtLe_Failed
Error of executing command of extended length reading. Full reinitialization of RFID-chip is
required (see section 5.4.4)

e RFID _LAYER6_SECURITY_MANAGER

Secure communication channel organization is required to access data (see sections 5.7.5,
5.8.3,5.8.8)

e RFID_LAYER6_APP_SELECTION_FAILURE
Error of executing APDU-command of Master File or application selection [30]

e RFID LAYER6_MUTUAIL AUTH MAC_FAIL

Error of the cryptogram checksum validation during BAC procedure [2, section IV, § A5.3],
[30]

e RFID LAYER6_MUTUAL_AUTH_ENC_FAIL
Error of the cryptogram validation during BAC [2, section 1V, § A5.3], [30]

e RFID_LAYER6_MUTUAL_AUTH_FAILURE
One of the errors of the APDU-commands:
1) Mutual Authenticate - performing the BAC [2, section IV, §A5.2];
2) General Authenticate - atthe 4" step of PACE performance [24, part 3, §B1];
3) General Authenticate - performing the CA [24, part 3, §B2]

e RFID_LAYER6_SM_DO8E_MISSING
Absence of the checksum in the protected APDU-response from the RFID-chip (SM ‘8E'
data object) [2, section IV, §A5.3], [30]

e RFID_LAYER6_SM_DO87_MISSING
Absence of the data padding object in the protected APDU-response from the RFID-chip
(SM "87" data object) [2, section IV, §A5.3], [30]

e RFID _LAYER6_SM_DO99_MISSING

Absence of the command execution status in the protected APDU-response from the RFID-
chip (SM "99’ data object) [2, section IV, §A5.3], [30]

e RFID_LAYER6_SM_MAC_INCORRECT
Error of the checksum validation of the protected APDU-response from the RFID-chip [2,
section IV, §A5.3], [30]

e RFID _LAYER6_SM_DO87_INCORRECT

Incorrect contents of the data padding object in the protected APDU-response from the
RFID-chip (SM ‘87" data object) [2, section 1V, §A5.3], [30]

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 265

6. SDK SOFTWARE TOOLS

e RFID_LAYER6_NON_TLV_RESPONSE_DATA
Response to Read Binary APDU-command, using 'B1' parameter for file data reading
with an offset >32767, is not represented in the TLV-format [2, section Ill, § A.23], [30]

e RFID_LAYER6_GET CHALLENGE_FAILURE
Error of Get Challenge APDU-command execution [30]

e RFID_LAYER6_WRONG_RND_ICC_LENGTH
Incorrect length of the data received as a result of Get Challenge APDU-command exe-
cution [30]

e RFID_LAYER6_INT_AUTH_FAILURE
Error of Internal Authenticate APDU-command execution when performing AA pro-
cedure [2, section IV, §A4.2], [30]

e RFID LAYER6_MSE_SET KAT FAILURE

Error of MSE:Set KAT APDU-command execution when performing CA procedure, ver-
sion 1[1, §B.1.1], [24, part 3, §B.2], [30]

e RFID_LAYER6_MSE_SET_DST_FAILURE
Error of MSE:Set DST APDU-command execution when performing TA procedure
[1, § B.2.1], [24, part 3, §B.3], [30]

e RFID_LAYER6_PSO_CERTIFICATE_FAILURE
Error of PSO:Verify Certificate APDU-command execution when performing TA
procedure [1, §B.2.2], [24, part 3, §B.3], [30]

e RFID_LAYER6_MSE_SET_AT_FAILURE
Error of MSE : Set AT APDU-command execution [30] when performing the procedures:
1) PACE [24, part 3, §B.1];
2) TA[1, §B.2.3];
3) CA, version 2 [24, part 3, §B.2];
4) Rl [24, part 3, §B.4];

e RFID_LAYER6_EXT_AUTH_FAILURE
Error of External Authenticate APDU-command execution when performing TA
procedure [1, §B.2.5], [24, part 3, §B.3], [30]

e RFID_LAYER6_GENERAL_AUTH_FAILURE
Error of General Authenticate APDU-command execution [30] when performing
PACE procedure at steps 1-3 [24, part 3, §B.1]

e RFID LAYER6 FILE NOT FOUND
File not found. ‘6 82’ status code of APDU-command execution [30]

266 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

e RFID_LAYER6_FILE_EOF1
Attempt of reading outside the end of the file. ‘62 82’ status code of APDU-command ex-
ecution [30]

e RFID_LAYER6_FILE_EOF2
Attempt of reading outside the file end of the. '6B 00’ status code of APDU-command ex-
ecution [30]

e RFID_LAYER6_INCORRECT_PARAMS
Error of the execution of MSE:Set AT (variants of appearance - see
RFID_LAYER6_MSE_SET_AT_FAILURE description) or General Authenticate (variants
of appearance — see RFID_LAYER6_GENERAIL_AUTH_FATLURE description).

Possible values in the context of command using:

1) the terminal does not support use of the selected type of password [24, part3,
§B.11.1];

2) the selected algorithm is not supported [24, part3, §B.11.1];

3) initialization error [24, part3, §B.11.2];

e RFID_LAYER6_NO_REFERENCE_DATA
Unavailable data, pointed to by the APDU-command parameters

e RFID_LAYER6_PWD_SUSPENDED
Error of the execution of MSE: Set AT (when performing PACE) or General Authenti-
cate (variants of appearance are analogue to RFID_LAYER6_GENERAIL_AUTH_FAILURE).
It means that the selected password is suspended. It is required to perform a procedure of
password resuming (see sections 4.5, 5.8.19)

e RFID_LAYER6_PWD_BLOCKED
Error of the execution of MSE: Set AT (when performing PACE) or General Authenti-
cate (variants of appearance are analogue to RFID_LAYER6_GENERAIL_AUTH_FAILURE).
It means that the selected password is blocked. It is required to perform a procedure of
password unblocking (see sections 4.5, 5.8.19)

e RFID_LAYER6_PWD_DEACTIVATED
Error of the execution of MSE: Set AT (when performing PACE). It means that the selected

password is deactivated. It is required to perform a procedure of password activation (see
sections 4.5, 5.8.19)

e RFID_LAYER6_PWD_BLOCKED_2
Error of the execution of General Authenticate APDU-command or commands of
work with eSign application [26]. It means that the selected password is blocked. It is re-
quired to perform procedure of password unblocking (see sections 4.5, 5.8.19)

e RFID LAYER6 PWD _DEACTIVATED 2
Error of the execution of General Authenticate APDU-command when performing
PACE procedure or commands of work with eSign application [26]. It means that the se-

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 267

6. SDK SOFTWARE TOOLS

lected password is deactivated. It is required to perform procedure of password activation
(see sections 4.5, 5.8.19)

e RFID_LAYER6_PWD_SUSPENDED_2
Error of General Authenticate APDU-command execution when performing PACE.
It means that the selected password is suspended. It is required to perform procedure of
password resuming (see sections 4.5, 5.8.19)

e RFID_LAYER6_PWD_FAILED
Error of the execution of MSE:Set AT when performing PACE procedure or General
Authenticate (variants of appearance are analogue to
RFID_LAYER6_GENERAL_AUTH_FAILURE).
It means that incorrect password value has been used. Low order 8 bits of code contain the
remaining number of attempts for this password. The user application may try to repeat an
attempt of performing the required procedure with other values (see sections 4.5, 5.8.19)

e RFID Error_ NotPerformed
Operation was not performed

e RFID Error_Session_IsClosed
Session closed, operation impossible

e RFID_Error_Session_Terminal_UnsupportedOperation
Operation is not supported by the current type of terminal

e RFID Error_Session_TerminalType_Unknown
Unknown type of terminal (see section 5.8.4)

e RFID_Error_Session_TerminalType_BadCertificate
Error of reading or analysis of the terminal certificate data (see section 5.8.4)

e RFID Error_Session_TerminalType_NotSet
Terminal type was not defined for the current session (see section 5.8.4)

e RFID_Error_Session_ProcedureType_Unknown
Unknown authentication procedure type (see section 5.8.5)

e RFID Error_Session_ProcedureType_Unsupported
Defined type terminal does not support this type of procedure (see section 5.8.5)

e RFID_Error_Session_ProcedureType_NotSet
Type of authentication procedure was not set for the current session (see section 5.8.5)

e RFID Error_Session_AccessKey_UnknownType
Unknown access key type (see section 5.8.6)

e RFID_Error_Session_AccessKey_UnsupportedSMType
Unsupported type of secure data access procedure (see section 5.8.6)

268 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

e RFID Error_Session_AccessKey_IncorrectSMType
Secure data access procedure does not allow to use the given key type (see section 5.8.6)

e RFID Error_Session_AccessKey_Restricted
Key type is not supported by the current terminal type, or the rights to its use are insuffi-
cient

e RFID Error_Session_AccessKey_IncorrectData
Incorrect key contents (empty or zero string)

e RFID Error_Session_AccessKey_NotSet
Secure data access key was not set for the current session

e RFID Error_Session_PwdManagement_NotAuthorized
Operation of password management is not authorized for the current terminal type

e RFID Error_Session_AccessControl_UnknownType
Unknown type of the procedure of authentication or secure data access

e RFID Error_Session_AccessControl_RequiresSM
Preliminary opening of the secure data access session is required (PACE or BAC)

e RFID_Error_Session_AccessControl_RequiresPACE
Preliminary opening of the secure data access session is required (PACE)

e RFID Error_Session_AccessControl_RequiresCAKeys
Execution of TA preliminary step (for version 2) is required — computing CA ephemeral
public keys (see sections 5.8.14)

e RFID Error_Session_AccessControl_RequiresTA
Preliminary TA procedure is required

e RFID Error_Session_AccessControl RequiresCA
Preliminary CA procedure is required

e RFID_Error_Session_AccessControl_IncorrectOptionCA
Discrepancy between the selected CA variant on the preliminary and main stages (see sec-
tion 5.8.14)

e RFID Error Session AccessControl CA_Failed
CA procedure failed

e RFID Error_Session_AccessControl TA Failed
TA procedure failed

e RFID Error_Session_AccessControl AA _Failed
AA procedure failed

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 269

6. SDK SOFTWARE TOOLS

e RFID Error_Session AccessControl RI Failed
RI procedure failed

e RFID Error_Session_PA_SignatureCheckFailed
Document security object digital signature verification failed (see section 5.8.12)

e RFID Error_Session PA_HashCheckFailed
Informational data group integrity verification failed (see section 5.8.13)

e RFID Error_Session_InvalidAuxData_DateOfExpiry
Verification of auxiliary data (date of expiry) failed (see section 5.8.18)

e RFID Error _Session_InvalidAuxData_DateOfBirth
Verification of auxiliary data (age) failed (see section 5.8.18)

e RFID Error_Session_InvalidAuxData_CommunityID
Verification of auxiliary data (Community I1D) failed (see section 5.8.18)

e RFID_Error_Session_eSign_RequiresAppSelection
Selection of eSign application is required to access its functionality (see section 5.8.20)

e RFID_Error_Session_eSign_PIN_NotSet
It is required to set the value of eSign-PIN for the current session (see section 5.8.20)

e RFID Error_Session_eSign_PIN_NotVerified
It is required to execute verification of eSign-PIN for the current session (see section 5.8.20)

e RFID_Error_Session_IncorrectData
Incorrect session object data (see section 5.8.22)

e RFID Error_Session_File_NotEnoughData
No sufficient data for creation of the file contents ASN.1 object. Low order WORD of the
code contains the file identifier (one of eRFID DataFile_Type values)

e RFID_Error_Session_File_IncorrectData
Incorrect data of the file contents ASN.1 object. Low orer WORD of the code contains the
file identifier (one of eRFID DataFile_Type values)

e RFID Error_Session_File_UnexpectedData
Incompliance of the structure of the file contents ASN.1 object with the structure given in
the respective specification. Low order WORD of the code contains the file identifier (one of
eRFID DataFile_Type values)

e RFID_Error_Session_File_Contents_UnexpectedData
Incompliance of the structure of the formed ASN.1-objects with the requirements of speci-
fication (in the context of specific file). Low order WORD of the code contains the file identi-
fier (one of eRFID DataFile_Type Values)

270 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

e RFID Error_Session_File WrongTag
Incorrect value of the data group tag. Low order WORD of the code contains the file identi-
fier (one of eRFID DataFile_Type values)

e RFID Error Session File CantUseData
Use of the read data is impossible (for example, when detecting any inconsistances in
dplStrictISO mode, see section 5.2). Low order WORD of the code contains the file iden-
tifier (one of eRFID DataFile_Type values)

e RFID Error_Session_File CantReadData
Error of physical data reading. Low order WORD of the code contains the file identifier (one
of eRFID DataFile_Type values)

e RFID Error_Session_File AccessDenied
Error of access to the protected data groups. Low order WORD of the code contains the file
identifier (one of eRFID DataFile_Type Vvalues)

6.4.45. eRFID ControlRF

eRFID ControlRF enumeration contains a set of values for use for SDK main control li-
brary initialization (see sections 5.4.1, 5.4.2).

enum eRFID ControlRF

{
CtrlRF_Auto =0,
CtrlRF_Manual 0x00000001,
CtrlRF_14443_4 Only = 0x00000040,

}s

Mode constant values:

CtrlRF Auto - automatic detection of RFID-chip presence in the scope of the
reader antenna;

CtrlRF Manual - manual detection of RFID-chip presence in the scope of the
reader antenna;

CtrlRF 14443 4 Only - ignoring the RFID-chips with support of only ISO/IEC 14443-3

protocol (MIFARE® Classic Protocol).

In the automatic mode of detection, when the chip appears in the scope of the reader an-
tenna, a RFID_Notification_DocumentReady message will be generated automatically
(see section 4.4) and in the future, after termination of data reading operation from the
memory of the current chip, search of a new chip will be renewed.

In the manual mode search of chip presence in the scope of the reader antenna is per-
formed (resumed) only if executing RFID_Command_DocumentDone command and
is single. RFID Notification_DocumentReady message is generated only if a chip

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 271

6. SDK SOFTWARE TOOLS

presence status has changed since the previous execution of this command with such
a single search.

Thus, the operation of RFID-chip detection (reading) in the manual mode should always be
initiated by executing RFID_Command_DocumentDone command.

6.4.46. eDataProcessinglLevel

eDataProcessingLevel enumeration contains a set of constants that define the level of
SDK reaction to detection of any inconsistencies to specifications when analyzing the data
or performing any operations (see section 5.2).

enum eDataProcessingLevel

{
dplMaxAvailable = O,

dplStrictISO =1,
s
Level constant values:
dplMaxAvailable - the least strict;
dplStrictISO - the most strict.

6.4.47. eRFID_AuthenticationProcedureType

eRFID AuthenticationProcedureType enumeration contains a set of constants that
define the type of performed procedure of document authentication within the context of
the communication session with electronic document (see section 5.8.5).

enum eRFID_AuthenticationProcedureType

{

aptUndefined = 0,
aptStandard =1,
aptAdvanced = 2,
aptGeneral = 3,

}i

Value of procedure type constants:

aptUndefined - not defined;

aptStandard - standard;

aptAdvanced - advanced;

aptGeneral - general authentication procedure.

6.4.48. eRFID_Password_Type

eRFID_Password Type enumeration contains a set of constants that define the type of
key to access the protected data (see section 6.3.82).

272 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

enum eRFID Password Type
{

pptUnknown 0,

pPptMRZ =1,

PptCAN = 2,

PptPIN = 3,

pptPUK = 4,

pptPIN eSign = 5,

PPtSAT = 6,
b
Value of constants:
pptUnknown — unknown type;
PPtMRZ - MRZ
PPtCAN - CAN;
PPtPIN — PIN;
pptPUK - PUK;
pptPIN eSign — eSign-PIN;
pPptSAT — Scanning Area Identifier (for eDL application).

6.4.49. eRFID_TerminalType

eRFID TerminalType enumeration contains a set of constants that define the type
of terminal within the context of the communication session with electronic document
(see section 6.3.83).

enum eRFID_TerminalType
{

tetUndefined 0,
tetInspectionSystem =1,
tetAuthenticationTerminal = 2,
tetSignatureTerminal = 3,
tetUnauthenticatedTerminal = 4,
I
Value of constants of terminal types:
tetUndefined - not defined;
tetInspectionSystem - Inspection system;
tetAuthenticationTerminal - authentication terminal;
tetSignatureTerminal - signature terminal;

tetUnauthenticatedTerminal unauthenticated terminal.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 273

6. SDK SOFTWARE TOOLS

6.4.50.

eRFID_TerminalAuthorizationRequirement

eRFID TerminalAuthorizationRequirement enumeration contains a set of con-
stants used in setting the combination of access rights to information and functional capa-
bilities requested from the RFID-chip (or delegated by it) (see section 6.3.83).

enum eRFID TerminalAuthorizationRequirement

{

b

tar IS ePassport DG3
tar IS ePassport DG4

tar IS ePassport All1DG

tar AT eID Read DGl
tar AT eID Read DG2
tar AT eID Read DG3
tar AT eID Read DG4
tar AT eID Read DG5S
tar AT eID Read DG6
tar AT eID Read DG7
tar AT eID Read DGS8
tar AT eID Read DG9Y
tar AT eID Read DGIO
tar AT eID Read DGI1
tar AT eID Read DG12
tar AT eID Read DGI3
tar AT eID Read DG14
tar AT eID Read DGI5
tar AT eID Read DGIo6
tar AT eID Read DG17
tar AT eID Read DGI18
tar AT eID Read DG19
tar AT eID Read DG20
tar AT eID Read DGZ21
tar AT eID Read Al1lDG

tar AT eID Write DG17
tar AT eID Write DGI18
tar AT eID Write DG19
tar AT eID Write DG20
tar AT eID Write DG21

tar AT eID Write AI11DG

tar AT Func InstallQCert

tar AT Func InstallCert

tar AT Func PINManagement

tar AT Func CAN Allowed

tar AT Func PrivilegedTerminal
tar AT Func RestrictedIdent
tar AT Func Verify CommunityID
tar AT Func Verify Age

tar AT Func Full

tar ST Gen QualifiedSignature

tar ST Gen Signature
tar ST Gen Full

= 0x00000001,

0x00000002,
0x00000003,

0x00000001,
0x00000002,
0x00000004,
0x00000008,
0x00000010,
0x00000020,
0x00000040,
0x00000080,
0x00000100,
0x00000200,
0x00000400,
0x00000800,
0x00001000,
0x00002000,
0x00004000,
0x00008000,
0x00010000,
0x00020000,
0x00040000,
0x00080000,
0x00100000,
0x001FFFFF,

0x00200000,
0x00400000,
0x00800000,
0x01000000,
0x02000000,
0x03E00000,

0x00000001,
0x00000002,
0x00000004,
0x00000008,
0x00000010,
0x00000020,
0x00000040,
0x00000080,
0x000000FF,

= 0x00000001,

0x00000002,
0x00000003,

274

Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

The value of the constants corresponds to the individual flags of a combination of access
rights to protected data and functional capabilities of the electronic document from the
terminal certificates for terminals of different types (see section 4.7).

6.4.51. eRFID_FilelD_Type

eRFID_FileID Type enumeration contains a set of constants that define the type of file
identifier and its addressing (selection) method (see section 6.3.87).

enum eRFID FileID Type

{
fidtUndefined =
fidtMF FullName
fidtMF ShortName
fidtDF FullName
fidtDF ShortName
fidtLocal Path

~

Il
~

~

Il
~

~

|
O W NP o

~

}s

Value of constants of types of file identifier:

fidtUndefined — not defined;
fidtMF FullName — full, with Master File prefix ('3F 00");
fidtMF ShortName - short, relative to Master File;

fidtDF FullName
fidtDF ShortName
fidtLocal Path

fill, relative to the current application;

short, addressing relative to the current application;

full, relative to the current application, file data reading is not per-
formed.

6.4.52. eRFID_AccessControl_ProcedureType

eRFID AccessControl_ProcedureType enumeration contains a set of constants that
define the type of authentication or secure data access procedure (see section 6.3.90).

enum eRFID AccessControl ProcedureType
{
acptUndefined =
acptBAC
acptPACE
acptCA =
acptTA =
CptAA =
acptRI =

~

~

~ ~

o U W N O
N~ W

~

}s

Value of procedure type constants:

acptUndefined - type is not defined;

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 275

6. SDK SOFTWARE TOOLS

acptBAC — BAC/BAP;
acptPACE — PACE;
acptCA - CA;
acptTA - TA;
acptAA - AA
acptRI - R

6.4.53. eRFID_TerminalAuthenticationType

eRFID TerminalAuthenticationType enumeration contains a set of constants that
define the order of terminal authentication procedure (see section 6.3.95).

enum eRFID TerminalAuthenticationType

{

tatDefault = 0,
tatOnline =1,
tatStepByStep = 2,

}s

Value of mode constants:

tatDefault - automatic, by default;
tatOnline - step-by-step, Online-authentication;
tatStepByStep - step-by-step interruptible.

6.4.54. eRFID_AuxiliaryDataType

eRFID AuxiliaryDataType enumeration contains a set of constants that define the type of
verified auxiliary data (see section 5.8.18).

enum eRFID AuxiliaryDataType
{

adtAge =1,
adtDateOfExpiry = 2,
adtCommunityID = 3,

}i

Constant values:

adtAge - DO's age;
adtDateOfExpiry — date of expiry;
adtCommunityID - Community ID.

6.4.55. eRFID_SectorKeyType

eRFID_SectorKeyType enumeration contains a set of constants that define the type of
terminal sector key when performing RI (see section 5.8.17).

enum eRFID SectorKeyType

276 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

|
=
~

spkiSectorKeyl =
spkiSectorKey2 = 2,
b

Constant values:

spkiSectorKeyl - terminal sector key 1;
spkiSectorKey2 - terminal sector key 2.

6.4.56. eRFID_Application_Type

eRFID Application_Type enumeration contains a set of constants that define the type
of application within the context of the communication session with electronic document
(see section 6.3.67).

enum eRFID Application_ Type
{

at Unspecified= 0,

at ePassport = 1,

at eID = 2,

at eSign 3,

at eDL = 4,

at RootFiles = at Unspecified,
beoo -
Value of constants:
at Unspecified ~ notdefined;
at_ePassport — ePassport application;
at eID - eID application;
at eSign - eSign application;
at eDL - eDL application;
at RootFiles — Master File.

6.4.57. eRFID_DataFile_Type

eRFID DataFile_Type ynumeration contains a set of constants that define the file type
(or logical belonging of the data object) within the context of the communication session
with electronic document (see sections 5.7.3, 5.8.8, 5.8.11, 5.8.21, 6.3.68).

enum eRFID DataFile Type

{
dftUnspecified =0,

dftPassport DGl =
dftPassport DG2
dftPassport DG3
dftPassport DG4
dftPassport DG5S =

Il
g w N
~ SN S N~ 0~

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 277

6. SDK SOFTWARE TOOLS

dftPassport DG6 = 6,
dftPassport DG7 =17,
dftPassport DGS8 = 8,
dftPassport DG9 =9,
dftPassport DG10 = 10,

dftPassport DG11 =11,

dftPassport DG12 =12,
dftPassport DG13 = 13,
dftPassport DG1l4 = 14,
dftPassport DG15 = 15,
dftPassport DG1l6 = lo,
dftPassport DG17 =17,
dftPassport DG18 = 18,
dftPassport DG19 =19,
dftPassport DG20 = 20,
dftPassport SOD = 21,
dftPassport CVCA = 22,
dftPassport COM = 23,
dftID DG1 = 101,
dftID DG2 = 102,
dftID DG3 = 103,
dftID DG4 = 104,
dftID DG5 = 105,
dftID DG6 = 106,
dftID DG7 = 107,
dftID DGS8 = 108,
dftID DG9Y = 109,
dftID DG10 = 110,
dftID DGI1 = 111,
dftID DG12 =112,
dftID DG13 = 113,
dftID DG14 = 114,
dftID DG15 = 115,
dftID DG16 = 1llo,
dftID DG17 =117,
dftID DG18 = 118,
dftID DG19 = 119,
dftID DG20 = 120,
dftID DG21 = 121,
dftDL COM = 150,
dftDL DGl = 151,
dftDL DG2 = 152,
dftDL DG3 = 153,
dftDL DG4 = 154,
dftDL DG5 = 155,
dftDL DG6 = 156,
dftDL DG7 = 157,
dftDL DGS8 = 158,
dftDL DG9Y = 159,
dftDL DG10 = 160,
dftDL DGI11 = le6l,
dftDL DG12 = lo62,
dftDL DG13 = 163,
dftDL DG14 = lo4,
dftDL SOD = 165,
dftDL CE = 166,

278 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

dftDL CVCA = 167,
dftPACE CardAccess = 200,
dftPACE CardSecurity = 201,
dftPACE ChipSecurity = 202,
dftMIFARE Data = 300,
dftMIFARE Validity = 301,
dftAuthenticityV2 = 302,
dftATR = 400,
dft eSign PK = 500,
dft eSign SignedData = 501,
dftCertificate = 600,
dftMasterList = 601,
dftDefectList = 602,
dftApp Directory = 700,
dftSession = 701,
dftLogData = 702,
dftChipProperties = 703,
dftUserDefined = 1000,

6.4.58. eRFID_CertificateOrigin

eRFID CertificateOrigin enumeration contains a set of constants that define the
source of certificate used in the procedure of document security object digital signature
verification (see section 6.3.73).

enum eRFID CertificateOrigin

{

coUndefined = 0,

coPKD =1,

coSecurityObject = 2,

coUserDefined = 3,

coMasterList PKD =4,

coMasterList SO =5,

coDefectList SO = 60,

coDeviationList SO = 7,

coBlackList SO 8,
i
Constant values:
coUndefined — the source is not defined;
coPKD — local PKD;
coSecurityObject - document security object;
coUserDefined — user-defined;
coMasterList PKD - contents of the Master List;
coMasterList SO - security object of the Master List.
coDefectList SO - security object of the Defect List,

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 279

6. SDK SOFTWARE TOOLS

coDeviationList SO - security object of the Deviation List,
coBlackList SO — security object of the Black List.

6.4.59. eRFID_CertificateType

eRFID CertificateType enumeration contains a set of constants that define the type
of certificate used in the procedure of document security object digital signature verifica-
tion (see section 6.3.73).

enum eRFID CertificateType
{

ctUndefined 0,

ctCSCA =1,

ctCSCALink = 2,

ctDS = 3,

ctMLS = 4,

ctDevLS = 5,

ctDefLS o,
i
Constant values:
ctUndefined - type is not defined;
ctCSCA — CSCA;
ctCSCALink — CSCA-link;
ctDS - DS;
ctMLS - Master List signer,
ctDevLsS — Deviaton List signer,
ctDefLS — Defect List signer.

6.4.60. eRFID_PasswordManagementAction

MepeuncneHne eRFID PasswordManagementAction enumeration contains a set of
constants that define the type of conducting operation with the secure data access key in
the scenario operation mode (see sections 4.5, 5.9.4.3).

enum eRFID PasswordManagementAction

{
pmaUndefined =
pmaChangeCAN =
pmaChangePIN =
pmaActivatePIN =
pmaDeactivatePIN =
pmaUnblockPIN =
pmaResumePIN =
pmaUnblock eSignPIN =
pmaCreate eSignPIN =
pmaTerminate eSignPIN =
pmaChange eSignPIN =

~ ~ ~ ~

~

~ ~ ~

O oo Joy 0l w NP O
~

O~
~

280 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

i

Constant values:

pmaUndefined - type is not defined;
pmaChangeCAN - changing CAN;
pmaChangePIN - changing PIN;
pmaActivatePIN - activating PIN;
pmaDeactivatePIN — deactivating PIN;
pmaUnblockPIN — unblocking PIN;
pmaResumePIN — resuming PIN;

pmaUnblock eSignPIN unblocking eSign-PIN;
pmaCreate eSignPIN - creating eSign-PIN;
terminating eSign-PIN;
changing eSign-PIN.

pmaTerminate eSignPIN

pmaChange eSignPIN

6.4.61. eRFID_PasswordPostDialogAction

eRFID_PasswordPostDialogAction enumeration contains a set of constants that de-
fine an action action to be taken after the closing the dialog window of secure data access
key management in the scenario operation mode (see section 5.9.4.4).

enum eRFID PasswordPostDialogAction

{

ppaUndefined = 0,

ppaRetry =1,

ppaChangeType = 2,

ppaResume = 3,

ppalUnblock = 4,

ppalActivate = b5,

ppaDeactivate = 6,

ppaChange =17,
I
Constant values:
ppaUndefined — action is not defined;
ppaRetry — use the new value of the current key type;
ppaChangeType - change the type of the key;
ppaResume — conduct the operation of key resuming (for PIN);
ppaUnblock — conduct the operation of key unblocking (for PIN);
ppaActivate — conduct the operation of key activation (for PIN);
ppaDeactivate — conduct the operation of key deactivation (for PIN);
ppaChange — conduct the operation of key changing (for CAN, PIN).

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 281

6. SDK SOFTWARE TOOLS

6.4.62. eRFID_TerminalAuthenticationToSignDataType

eRFID TerminalAuthenticationToSignDataType enumeration contains a set of
constants that define type of data transmitted to the user application on the second step
of TA procedure in Online and step mode (see section 5.8.15) or in the scenario operation
mode (see section 5.9.4.7)

enum eRFID TerminalAuthenticationToSignDataType

{
tatsdtPlainData = 0,
tatsdtHashValue =1,

};
Constant values:

tatsdtPlainData - data for signature generation transmitted;
tatsdtHashvalue - hash value of the data for signature generation transmitted.

282 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

6.5. SDK COMMAND SYSTEM (ERFID_COMMANDS)

The main library function, by which the user application can initiate all necessary actions
for work with RFID-chips, is _RFID_ExecuteCommand ()function (see section 6.1.4).
It takes a command triplet as the parameters: command code (command parameter), com-
mand input parameter (params parameter) and a pointer to the container (result param-
eter) for return results of the command.

ATTENTION! In some cases, the purpose of the parameters of RFID_ExecuteCommand ()
function may vary.

eRFID_Commands enumeration contains a set of command codes supported by the
current version of the SDK control library.

enum eRFID_Commands

{

RFID Command Get AvailableGraphicFormats

RFID Command Get DeviceCount
RFID Command Get CurrentDevice
RFID Command Set CurrentDevice

RFID Command Get DeviceFirmwareVersion

RFID Command Get DeviceDescription

RFID Command Get DeviceDriverVersion
RFID Command Get DevicelInstancelD
RFID Command Get ParentInstancelD
RFID Command Get DeviceHardwarelD
RFID Command Get CodeTranscription
RFID Command SelectDeviceByName

RFID Command SelectDeviceBySN

RFID Command Get DeviceSN

RFID Command BuildLog

RFID Command FlushLog

RFID Command LogDirectory

RFID Command UseDeviceDriverLog

RFID Command Set CheckResultHeight

REFID Command SetCryptKey
RFID Command GetCryptKey

RFID Command SetMIFARE KeyMode
RFID Command GetMIFARE KeyMode

RFID Command SetMIFARE KeyTable
RFID Command GetMIFARE KeyTable

RFID Command Get OperationalBaudRate
RFID Command Set OperationalBaudRate

0x00000013,

0x00000001,
0x00000002,
0x00000003,

0x00000007,
0x00000016,

0x00000017,
0x00000100,
0x00000101,
0x00000102,
0x00000103,
0x00000040,
0x00000041,
0x00000042,

0x00000019,
0x00000020,
0x00000021,
0x00000022,

0x0000002E,

0x00000008,
0x00000009,

0x0000000F,
0x00000010,

0x00000011,
0x00000012,

0x00000014,
0x00000015,

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021

283

6. SDK SOFTWARE TOOLS

RFID Command Set PassivePKD = 0x00000032,
RFID Command Get PassivePKD = 0x00000033,
RFID Command Set EAC PKD = 0x00000034,
RFID Command Get EAC PKD = 0x00000035,
RFID Command ReadCardProperties = 0x00000004,
RFID Command ReadCardPropertiesExt = 0x00000069,
RFID Command ReadCardPropertiesExt2 = 0x00000080,
RFID Command ReadProtocolé = 0x00000005,
RFID Command ReadProtocol3 = 0x00000006,
RFID Command CancelReading = 0x0000001A,
RFID Command DocumentDone = 0x00000004,
RFID Command IsDocument = 0x0000000B,
RFID Command ParseRawData = 0x00000018,
RFID Command ClearResults = 0x0000001B,
RFID Command Set DetectionMode = 0x00000081,
RFID Command SetDataProcessingLevel = 0x00000050,
RFID Command GetDataProcessingLevel = 0x00000051,
RFID Command SetTransferBufferSize = 0x00000054,
RFID Command GetTransferBufferSize = 0x00000055,
RFID Command SetUserDefinedFilesToRead = 0x00000060,
RFID Command Set DS Cert Priority = 0x00000062,
RFID Command Get DS Cert Priority = 0x00000063,
RFID Command Set TrustedPKD = 0x0000006B,
RFID Command Get TrustedPKD = 0x0000006A,
RFID Command Set ProfilerType = 0x00000070,
RFID Command Get ProfilerType = 0x00000071,
RFID Command Set DefaultPACEOption = 0x00000072,
RFID Command Get DefaultPACEOption = 0x00000073,
RFID Command Set OnlineTAToSignDataType = 0x00000074,
RFID Command Get OnlineTAToSignDataType = 0x00000075,
RFID Command Set Processing Amendment = 0x00000078,
RFID Command Set ParsedCustomDataType = 0x00000079,
RFID Command Set UseExternalCSCA = 0x0000007A,
RFID Command Get UseExternalCSCA = 0x0000007B,
RFID Command Set Graphics CompressionRatio = 0x0000007E,
RFID Command Get Graphics CompressionRatio = 0x0000007F,
RFID Command Session Open = 0x00001000,
RFID Command Session SelectApplication = 0x00001001,
RFID Command Session AccessControlProc = 0x00001002,
RFID Command Session ReadFile = 0x00001003,
RFID Command Session PA CheckSO = 0x00001004,
RFID Command Session PA CheckFile = 0x00001005,
RFID Command Session Close = 0x00001006,
RFID Command Session ReadMifare = 0x00001007,
RFID Command Session SetAccessKey = 0x00001008,

284 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

RFID Command Session SetTerminalType = 0x00001009,
RFID Command Session SetProcedureType = 0x00001004,
RFID Command Session WriteFile = 0x00001008B,
RFID Command Session Verify = 0x0000100¢C,
RFID Command Session Password ChangePIN = 0x0000100D,
RFID Command Session Password ChangeCAN = 0x0000100E,
RFID Command Session Password UnblockPIN = 0x0000100F,
RFID Command Session Password ActivatePIN = 0x00001010,
RFID Command Session Password DeactivatePIN = 0x00001011,
RFID Command Session PA IsFileCheckAvailable = 0x00001012,
RFID Command Session eSign CreatePIN = 0x00001020,
RFID Command Session eSign ChangePIN = 0x00001021,
RFID Command Session eSign UnblockPIN = 0x00001022,
RFID Command Session eSign TerminatePIN = 0x00001023,
RFID Command Session eSign VerifyPIN = 0x00001024,
RFID Command Session eSign GenerateKeyPair = 0x00001025,
RFID Command Session eSign TerminateKeyPair = 0x00001026,
RFID Command Session eSign_ SignData = 0x00001027,
RFID Command Session LoadData = 0x00001030,
RFID Command Session_ SaveData = 0x00001031,
RFID Command Session LoadData Reparse = 0x00001032,
RFID Command Scenario Process = 0x00003000,
RFID Command Set TCC Params = 0x00005000,

}s

The description of each command is given below as follows:

e command code

e input parameter params
e output parameter result
e command assignment

e short description

The terms of «input»/«output» for the function parameter speak about its use either as an
input parameter of the command, or it serves for receiving the data generated during the
process of command execution.

6.5.1. RFID_Command_Get_AvailableGraphicFormats

Input parameter: not used
Output parameter: char **
Assignment: acquisition of the list of graphic file format extensions,

available for use when storing graphic data (see sec-
tions 5.6.3, 6.1.6)

This command initializes the pointer located at the address in result parameter by the
pointer to the string with the current combination of formats.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 285

6. SDK SOFTWARE TOOLS

6.5.2. RFID Command_Get _DeviceCount

Input parameter: not used
Output parameter: long *
Assignment: determination of the total number of RFID-chip

readers actually connected to the PC (see section 5.3)

6.5.3. RFID Command_Get_CurrentDevice

Input parameter: not used
Output parameter: long *
Assignment: determination of the index of the current active RFID-

chip reader (see section 5.3)

6.5.4. RFID Command Set CurrentDevice

Input parameter: long
Output parameter: not used
Assignment: activation of the reader with the given index from the

general list (see section 4.3)

Device index in the general list is given in params parameter.

6.5.5. RFID Command _Get DeviceFirmwareVersion

Input parameter: long
Output parameter: long *
Assignment: determination of the firmware version of the RFID-chip

reader (see sections 5.3, 6.3.66)
Device index in the general list is given in params parameter.

Version of reader firmware is represented in ‘A.B’ format, where
A = HIBYTE (LOWORD ())
B = LOBYTE (LOWORD ())

6.5.6. RFID_Command_Get_DeviceDescription

Input parameter: long
Output parameter: char **
Assignment: acquisition of the symbolic name of the reader

from the general list (see section 5.3)

Device index in the general list is given in params parameter.

286 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

This command initializes the pointer at the address in result parameter with the pointer
to the string with a symbolic reader name.

6.5.7. RFID Command Get _DeviceDriverVersion

Input parameter: long
Output parameter: long *
Assignment: determination of RFID-chip reader driver version (see

sections 5.3, 6.3.66)
Device index in the general list is given in params parameter.

Version of reader driver is represented in ‘A.B.C. D' format, where

A = HIBYTE (HIWORD ())
B = LOBYTE (HIWORD ())
C = HIBYTE (LOWORD ())
D = LOBYTE (LOWORD ())

6.5.8. RFID Command Get DevicelnstancelD

Input parameter: long
Output parameter: char **
Assignment: acquisition of the symbolic system identifier of the

reader device instance, determined by Windows
APl SetupDiGetDeviceInstanceID() function
(see section 5.3)

Device index in the general list is given in LOWORD (params).

This command initializes the pointer located at the address in result parameter, with the
pointer to the string with identifier.

Example of identifier value: USB\VID_1C6A&PID 7051\6&13F14847&0&3

6.5.9. RFID Command Get ParentinstancelD

Input parameter: long
Output parameter: char **
Assignment: acquisition of the symbolic system identifier of the

device instance, to which the RFID-chip is physically
connected (in most cases it is USB Hub), determined
by Windows APl CM_Get_Device_ID() function (see
section 5.3)

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 287

6. SDK SOFTWARE TOOLS

Device index in the general list is given in LOWORD (params), HIWORD (params) — index
of parent device in the tree of mutual connections. Connection tree formed directly from
the parent device and ends at the root system resource.

This command initializes the pointer located at the address in result parameter, with the
pointer to the string with identifier.

Example of identifier value: USB\VID_05E3&PID_0608\5&2CA10F73&0&2

6.5.10. RFID Command Get_DeviceHardwarelD

Input parameter: long

Output parameter: char **

Assignment: acquisition of the symbolic system identifier of
RFID-chip reader, determined by Windows APl Set-
upDiGetDeviceRegistryProperty () function (see
section 5.3)

Device index in the general list is given in LOWORD (params).

This command initializes the pointer located at the address in result parameter, with the
pointer to the string with identifier.

Example of identifier value: USB\VID_1C6A&PID_7051&REV_0000

6.5.11. RFID_Command_Get_CodeTranscription

Input parameter: long
Output parameter: char **
Assignment: acquisition of the abbreviation of a notification or SDK

function return code (see section 5.2)
Numerical code of event/status is specified in params parameter.

This command initializes the pointer located at the address in result parameter, with the
pointer to the character string.

6.5.12. RFID_Command_SelectDeviceByName

Input parameter: char *
Output parameter: not used
Assignment: RFID-chip reader activation by the symbolic string of

the system UID of the parent Hub (see section 5.3)

288 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

6.5.13. RFID_Command_SelectDeviceBySN

Input parameter: long
Output parameter: not used
Assignment: reader activation by the serial number of the RFID-chip

reader (see section 5.3)

6.5.14. RFID_ Command_Get_DeviceSN

Input parameter: long
Output parameter: long *
Assignment: determination of the serial number of the RFID-chip

reader (see section 5.3)

Device index in the general list is given in params parameter.

6.5.15. RFID_Command_BuildLog

Input parameter: bool
Output parameter: not used
Assignment: activation/deactivation of SDK logging (see section 5.5.1)

6.5.16. RFID_Command_FlushLog

Input parameter: char *
Output parameter: not used
Assignment: recording of the current file of SDK log under the as-

signed file name (see section 5.5.1)

Full log file name in UTF8 format is given in params parameter.

6.5.17. RFID_Command_LogDirectory

Input parameter: char *
Output parameter: not used
Assignment: definition of the directory of SDK log file recording

(see section 5.5.1)

Full directory name (in UTF8 format) of SDK log file recording is given in params parame-
ter.

6.5.18. RFID_Command_Set_CheckResultHeight

Input parameter: long
Output parameter: not used

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 289

6. SDK SOFTWARE TOOLS

Assignment: setting the required height of images (in pixels) requested
using _RFID CheckResultFromList ()function (see
section 6.1.6)

6.5.19. RFID_Command_SetCryptKey

Input parameter: char *
Output parameter: not used
Assignment: setting the secure data access key (MRZ) when work-

ing in the batch mode (see section 5.7.5)

6.5.20. RFID_Command_GetCryptKey

Input parameter: not used
Output parameter: char **
Assignment: acquisition of the current value of the secure data ac-

cess key (MRZ) when working in the batch mode (see
section 5.7.5)

This command initializes the pointer located at the address in result parameter, with the
pointer to the string with the current key value.

6.5.21. RFID_Command_SetMIFARE_KeyMode

Input parameter: long
Output parameter: not used
Assignment: setting the authentication mode type for data reading

via MIFARE® Classic Protocol (see section 5.7.3)

One of the constants eMIFARE_KeyMode is given in the parameter params.

6.5.22. RFID_Command_GetMIFARE_KeyMode

Input parameter: not used
Output parameter: long *
Assignment: acquisition of the current value of the authentication

mode type for data reading via MIFARE® Classic Pro-
tocol (see section 5.7.3)

6.5.23. RFID_Command_SetMIFARE_KeyTable

Input parameter: TMIFARE_KeyTable *
Output parameter: not used
Assignment: setting the set of authentication keys for data reading

via MIFARE® Classic Protocol (see section 5.7.3)

290 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

6.5.24. RFID_Command_GetMIFARE_KeyTable

Input parameter: not used
Output parameter: TMIFARE_KeyTable *
Assignment: acquisition of the current set of authentication keys for da-

ta reading via MIFARE® Classic Protocol (see section 5.7.3)

6.5.25. RFID_Command_Set_OperationalBaudRate

Input parameter: long
Output parameter: not used
Assignment: setting the combination of allowed rates of data ex-

change between the reader and the RFID-chip (see
section 5.4.3)

One of the constants eRFID_BaudRate is given in the parameter params.

6.5.26. RFID_Command_Get_OperationalBaudRate

Input parameter: not used
Output parameter: long *
Assignment: acquisition of the current combination of the working

rates of data exchange between the reader and the
RFID-chip (see section 5.4.3)

6.5.27. RFID_Command_Set_PassivePKD

Input parameter: char *
Output parameter: not used
Assignment: setting a full name of the directory, containing a set of

PKD files for PA (see section 5.5.2)

Full PKD directory name (in UTF8 format) is given in params parameter.

6.5.28. RFID_ Command_Get_PassivePKD

Input parameter: not used
Output parameter: char **
Assignment: acquisition of full name of the current directory, con-

taining a set of PKD files for PA(see section 5.5.2)

This command initializes the pointer located at the address in result parameter, with the
pointer to the string in UTF8 format with the current directory full name.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 291

6. SDK SOFTWARE TOOLS

6.5.29. RFID Command_Set EAC PKD

Input parameter: char *
Output parameter: not used
Assignment: setting a full name of the directory, containing a set of

PKD files for TA (see section 5.5.3)

Full PKD directory name (in UTF8 format) is given in params parameter.

6.5.30. RFID_ Command_Get EAC PKD

Input parameter: not used
Output parameter: char **
Assignment: acquisition of full name of the current directory, con-

taining a set of PKD files for TA (see section 5.5.3)

This command initializes the pointer located at the address in result parameter, with the
pointer to the string in UTF8 format with the current directory full name.

6.5.31. RFID_Command_Get_ReadCardProperties

Input parameter: not used
Output parameter: TRFCardProp *
Assignment: acquisition of RFID-chip characteristics, located in

the scope of the reader when working in the batch
mode (see section 5.7.1)

This command fills TRECardProp structure, located at the address in result parameter,
by the newly received data from the RFID-chip.

This command cleans the results obtained by previous RFID_Command_ReadProtocol3
and RFID_Command_ReadProtocol4 commands of data reading.

6.5.32. RFID_Command_ReadCardPropertiesExt

Input parameter: not used
Output parameter: TRFID_CardPropertiesExt **
Assignment: acquisition of RFID-chip characteristics, located in

the scope of the reader when working in the batch
mode (see section 5.7.1)

This command returns the pointer to TRFID_CardPropertiesExt structure, located at
the address in result parameter, which contains information on RFID-chip's characteris-
tics.

292 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

This command cleans the results obtained by previous RFID_Command_ReadProtocol3
and RFID_Command_ReadProtocol4 commands of data reading.

6.5.33. RFID_Command_ReadCardPropertiesExt2

Input parameter: not used
Output parameter: TRFChipProperties **
Assignment: acquisition of RFID-chip characteristics, located in

the scope of the reader (see section 5.7.1)
This command returns the pointer to TRFChipProperties, structure, located at the ad-

dress in result parameter, which contains information on RFID-chip's characteristics (for
readers with firmware version 21.00 and higher).

6.5.34. RFID_ Command_ReadProtocol3

Input parameter: not used
Output parameter: TResultContainerList **
Assignment: data reading from the memory of the RFID-chip via

ISO/IEC 14443-3 protocol (MIFARE® Classic Protocol)
when working in the batch mode (see section 5.7.3)

This command initializes the pointer to TResultContainerList structure, located at the

address in result parameter, with the pointer to the list of container structures with the
newly received data from the RFID-chip.

6.5.35. RFID Command _ReadProtocol4

Input parameter: long
Output parameter: TResultContainerList **
Assignment: data reading from the memory of the RFID-chip via

ISO/IEC 14443-4 protocol when working in the batch
mode (see section 5.7.4)

A combination of eRFID_DataGroups flags is passed in params parameter of this com-
mand, specifying the set of read data groups.

This command initializes the pointer to TResultContainerList structure, located at the
address in result parameter, with the pointer to the list of container structures with the
newly received data from the RFID-chip.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 293

6. SDK SOFTWARE TOOLS

6.5.36. RFID_Command_CancelReading

Input parameter: not used
Output parameter: not used
Assignment: forced termination of data reading from the memory

of the RFID-chip (see sections 5.7.4, 5.8.10)

6.5.37. RFID_ Command _DocumentDone

Input parameter: long
Output parameter: not used
Assignment: finalization of work with the RFID-chip (see sections

54.1,54.6, 5.7.8)

One of eRFID ManualChipDetectionMode values is specified in params parameter
of this command, defining the further action of RFID-chips search in the scope of the
reader antenna.

6.5.38. RFID_ Command_IsDocument

Input parameter: not used

Output parameter: bool *

Assignment: determination of the current status of the availabil-
ity of RFID-chip in the scope of the reader (see sec-
tion 5.4.1)

6.5.39. RFID Command ParseRawData

Input parameter: TCustomRawDatalList *
Output parameter: TResultContainerList **
Assignment: analysis of data previously received from the RFID-chip

params parameter of this command should contain a pointer to the list of binary represen-
tation of the informational data groups contents, reading of which was performed earlier.

This command initializes the pointer to TResultContainerList structure, located at the

address in result parameter, with the pointer to the list of container structures with logi-
cally parsed data of information groups.

6.5.40. RFID_ Command _ClearResults

Input parameter: not used
Output parameter: not used
Assignment: cleaning memory occupied by the current results of work

with electronic document (see sections 5.8.1, 5.9)

294 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

6.5.41. RFID Command Set DetectionMode

Input parameter:
Output parameter:
Assignment:

long
not used
chip detection mode setting (see section 6.4.45)

CtrlRF_Auto or CtrlRF_Manual of eDataProcessinglLevel values is given in

params parameter of this command.

6.5.42. RFID_Command_SetDataProcessingLevel

Input parameter:
Output parameter:
Assignment:

long

not used

setting the level of strictness of SDK reaction to detec-
tion of discrepancies in the structure of processed data
and the errors of execution of different operations (see
section 5.2)

One of eDataProcessingLevel values is given in params parameter of this command.

6.5.43. RFID_Command_GetDataProcessinglLevel

Input parameter:
Output parameter:
Assignment:

not used

long *

acquisition of the current value of the level of strict-
ness of SDK reaction to detection of discrepancies in
the structure of the processed data and errors when
executing different operations (see section 5.2)

6.5.44. RFID Command_SetTransferBufferSize

Input parameter:
Output parameter:
Assignment:

long

not used

setting the data reading buffer size, activation of the
mode of using the extended length reading com-
mands (see section 5.4.4)

6.5.45. RFID_ Command_GetTransferBufferSize

Input parameter:
Output parameter:
Assignment:

not used

long *

acquisition of the data reading buffer size (see section
5.4.4)

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021

295

6. SDK SOFTWARE TOOLS

6.5.46. RFID_ Command_SetUserDefinedFilesToRead

Input parameter: TRFID FilesList *
Output parameter: not used
Assignment: setting the list of non-standard files to include in the

overall reading operation when working in the batch
mode (see section 5.7.4)

6.5.47. RFID_Command_Set_DS_Cert_Priority

Input parameter: long
Output parameter: not used
Assignment: definition of the priority of using DS-certificates from

different sources (see section 5.5.2)

One of eDSCertificatePriority values is given in params parameter of this
command.

6.5.48. RFID_Command_Get_DS_Cert_Priority

Input parameter: not used
Output parameter: long *
Assignment: acquisition of the current value of the priority of using

DS-certificates from different sources (see section 5.5.2)

6.5.49. RFID Command_Set TrustedPKD

Input parameter: long
Output parameter: not used
Assignment: setting the level of trust to CSCA-certificates from PKD

(see section 5.5.2)

A sign of the maximum trust level activation is specified in params parameter of this
command (true or false).

6.5.50. RFID Command_Get_TrustedPKD

Input parameter: not used
Output parameter: long *
Assignment: acquisition of the sign of maximum trust level activity to

CSCA-certificates from PKD (see section 5.5.2)

6.5.51. RFID_Command_Session_Open

Input parameter: not used
Output parameter: TRFID_Session **

296 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

Assignment: opening of the work session with electronic document
(see section 5.8.3)

The command initializes the pointer by the address given in result parameter with the
reference to the created data object of the session work results.

6.5.52. RFID_Command_Session_SelectApplication

Input parameter: TRFID_ApplicationID *
Output parameter: TRFID_Session *
Assignment: selection of the application within the context of the

communication session with electronic document (see
section 5.8.9)

6.5.53. RFID_ Command Session_AccessControlProc

Input parameter: TREFID_AccessControl_Params *
Output parameter: TRFID_Session *
Assignment: authentication or secure data access procedure within

the context of the communication session with elec-
tronic document (see section 5.8.7)

6.5.54. RFID_ Command_Session ReadFile

Input parameter: TRFID FileID *
Output parameter: TRFID_Session *
Assignment: data reading from the file within the context of the

communication session with electronic document (see
section 5.8.10)

6.5.55. RFID Command _Session PA_CheckSO

Input parameter: TPA_Params *
Output parameter: TRFID_Session *
Assignment: document security object verification within the con-

text of the communication session with electronic
document (see section 5.8.12)

6.5.56. RFID_ Command_Session PA_CheckFile

Input parameter: TRFID_DataFile *
Output parameter: TRFID_Session *
Assignment: file data integrity verification within the context of the

communication session with electronic document (see
section 5.8.13)

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 297

6. SDK SOFTWARE TOOLS

6.5.57. RFID_ Command _Session_Close

Input parameter:
Output parameter:
Assignment:

long

TRFID Session *

closing of the communication session with electronic
document

One of eRFID ManualChipDetectionMode values is passed in params parameter of
this command, determining the further action of search of RFID-chips in the scope of the
reader antenna when working in the mode of manual detection of RFID-chip (See descrip-
tion RFID _Command DocumentDone).

6.5.58. RFID Command_Session ReadMifare

Input parameter:
Output parameter:
Assignment:

not used

TRFID_Session *

performance of the data reading procedure via
ISO/IEC 14443-3 protocol (MIFARE® Classic Protocol)
within the context of the communication session with
electronic document (see section 5.8.11)

6.5.59. RFID_Command_Session_SetAccessKey

Input parameter:
Output parameter:
Assignment:

TRFID _AccessKey *

TRFID _Session *

selection and initialization of the data access key with-
in the context of the communication session with elec-
tronic document (see section 5.8.6)

6.5.60. RFID_Command_Session_SetTerminalType

Input parameter:
Output parameter:
Assignment:

TRFID_Terminal *

TRFID_Session *

setting the configuration of the current terminal within
the context of the communication session with elec-
tronic document (see section 5.8.4)

6.5.61. RFID_Command_Session_SetProcedureType

Input parameter:
Output parameter:
Assignment:

long

TRFID_Session *

setting the type of performed authentication proce-
dure within the context of the communication session
with electronic document (see section 5.8.5)

298

Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

One of eRFID AuthenticationProcedureType values is specified in params pa-
rameter of this command, determining the type of procedure.

6.5.62. RFID_ Command_Session_WriteFile

Input parameter: TRFID_FileUpdateData *
Output parameter: TRFID_Session *
Assignment: the operation of updating the contents of informa-

tional data group within the context of the commu-
nication session with electronic document (see sec-
tion 5.8.19)

6.5.63. RFID_Command_Session_Verify

Input parameter: long
Output parameter: TRFID_Session *
Assignment: the procedure of auxiliary data verification within the

context of the communication session with electronic
document (see section 5.8.18)

One of eRFID AuxiliaryDataType values is specified in params parameter of this
command, determining the type of verified data.

6.5.64. RFID_Command_Session_Password_ChangePIN

Input parameter: char *
Output parameter: TRFID_Session *
Assignment: the procedure of changing the value of PIN password

within the context of the communication session with
electronic document (see section 5.8.20)

A pointer to the character string (ASCII) is specified in params parameter of this command,
determining the new password contents.

6.5.65. RFID_Command_Session_Password_ChangeCAN

Input parameter: char *
Output parameter: TRFID_Session *
Assignment: the procedure of changing the value of CAN password

within the context of the communication session with
electronic document (see section 5.8.20)

A pointer to the character string (ASCII) is specified in params parameter of this command,
determining the new password contents.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 299

6. SDK SOFTWARE TOOLS

6.5.66. RFID_ Command_Session Password UnblockPIN

Input parameter:
Output parameter:
Assignment:

not used

TRFID_Session *

the procedure of unblocking PIN password within the
context of the communication session with electronic
document (see section 5.8.20)

6.5.67. RFID_ Command_Session Password_ActivatePIN

Input parameter:
Output parameter:
Assignment:

not used

TRFID _Session *

the procedure of activating PIN password within the
context of the communication session with electronic
document (see section 5.8.20)

6.5.68. RFID_ Command_Session Password_DeactivatePIN

Input parameter:
Output parameter:
Assignment:

not used

TRFID Session *

the procedure of deactivating PIN password within the
context of the communication session with electronic
document (see section 5.8.20)

6.5.69. RFID_ Command _Session PA IsFileCheckAvailable

Input parameter:
Output parameter:
Assignment:

TRFID _FileID *

TRFID_Session *

check of the presence of specific file hash value in the
structure of the detected document security objects
within the context of the communication session with
electronic document (see sections 5.8.10, 5.8.13)

6.5.70. RFID_Command_Session_eSign_CreatePIN

Input parameter:
Output parameter:
Assignment:

TRFID eSignPINParameters *

TRFID_Session *

the procedure of creating eSign-PIN password within
the context of the communication session with elec-
tronic document (see section 5.8.20)

6.5.71. RFID_Command_Session_eSign_ChangePIN

Input parameter:
Output parameter:

TRFID eSignPINParameters *
TRFID _Session *

300

Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

Assignment: the procedure of changing eSign-PIN password within
the context of the communication session with elec-
tronic document (see section 5.8.20)

6.5.72. RFID_Command_Session_eSign_UnblockPIN

Input parameter: TRFID eSignPINParameters *
Output parameter: TRFID_Session *
Assignment: the procedure of unblocking eSign-PIN password with-

in the context of the communication session with elec-
tronic document (see section 5.8.20)

6.5.73. RFID_Command_Session_eSign_TerminatePIN

Input parameter: TRFID eSignPINParameters *
Output parameter: TRFID_Session *
Assignment: the procedure of terminating eSign-PIN password

within the context of the communication session with
electronic document (see section 5.8.20)

6.5.74. RFID_Command_Session_eSign_VerifyPIN

Input parameter: not used
Output parameter: TRFID_Session *
Assignment: the procedure of verifying eSign-PIN password within

the context of the communication session with elec-
tronic document (see section 5.8.21)

6.5.75. RFID_Command_Session_eSign_GenerateKeyPair

Input parameter: TRFID eSignKeyParameters *
Output parameter: TRFID_Session *
Assignment: the procedure of creating a pair of cryptographic keys for

eSign application within the context of the communica-
tion session with electronic document (see section 5.8.21)

6.5.76. RFID_Command_Session_eSign_TerminateKeyPair

Input parameter: TRFID eSignKeyParameters *
Output parameter: TRFID_Session *
Assignment: the procedure of terminating a pair of cryptographic

keys for eSign application within the context of the
communication session with electronic document (see
section 5.8.21)

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 301

6. SDK SOFTWARE TOOLS

6.5.77. RFID_Command_Session_eSign_SignData

Input parameter: TCustomRawData *
Output parameter: TRFID_Session *
Assignment: the procedure of creating a data digital signature with-

in the context of the communication session with elec-
tronic document (see section 5.8.21)

6.5.78. RFID Command_Session LoadData

Input parameter: TCustomRawData *
Output parameter: TRFID_Session **
Assignment: the procedure of creating a session object on the basis

of the existing integral block of data (see section 5.8.22)

The command initializes the pointer by the address specified in result parameter, with
a reference to the created data object with the results of work of virtual session.

6.5.79. RFID_ Command_Session_SaveData

Input parameter: TCustomRawData *
Output parameter: TRFID_Session *
Assignment: the procedure of creating of the integral block of ses-

sion data (see section 5.8.22)

The command fills the object by the pointer set in params parameter, with data of the re-
sults of the current session work.

6.5.80. RFID_Command_Get_ProfilerType

Input parameter: not used
Output parameter: long *
Assignment: request the type of logical data profiler to use with the

electronic document in accordance with the require-
ments of [2] and [3] (default) or [31] (see section 5.2)

6.5.81. RFID_Command_Set_ProfilerType

Input parameter: long
Output parameter: not used
Assignment: selection of the type of logical data profiler to use with

the electronic document in accordance with the re-
quirements of [2] and [3] (default) or [31] (see section
5.2)

302 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

In params parameter of this command is given one of eRFID SDK ProfilerType
values.

6.5.82. RFID_Command_Get_DefaultPACEOption

Input parameter: not used
Output parameter: long *
Assignment: request the default index of PACE procedure variant

(see section 5.8.8)

6.5.83. RFID_Command_Set_DefaultPACEOption

Input parameter: long
Output parameter: not used
Assignment: definition of the default index of PACE procedure vari-

ant (see section 5.8.8)

In params parameter of this command is given the index of procedure variant.

6.5.84. RFID_ Command _Scenario Process

Input parameter: char *

Output parameter: char **

Assignment: conducting the communication session with the elec-
tronic document in the scenario operation mode (see
section 5.9)

In params parameter of this command is given the scenario XML-structure.

XML-representation of TRFID_Session with the results of the communication session
with the electronic document will be referenced by the output parameter.

6.5.85. RFID_Command_Set_OnlineTAToSignDataType

Input parameter: long
Output parameter: not used
Assignment: definition of the type of data transmitted to the user

application on the second step of TA procedure in
Online and step mode (see section 5.8.15) or in the
scenario operation mode (see section 5.9.4.7)

In params parameter of this command is given one of
eRFID TerminalAuthenticationToSignDataType values.

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 303

6. SDK SOFTWARE TOOLS

6.5.86. RFID_Command_Get_OnlineTAToSignDataType

Input parameter: not used
Output parameter: long *
Assignment: request the type of data transmitted to the user appli-

cation on the second step of TA procedure in Online
and step mode (see section 5.8.15) or in the scenario
operation mode (see section 5.9.4.7)

6.5.87. RFID_Command_Set_Graphics_CompressionRatio

Input parameter: long
Output parameter: not used
Assignment: setting the compression level of images when working

with the respective graphic formats (see section 5.6.3)

6.5.88. RFID_Command_Get_Graphics_CompressionRatio

Input parameter: not used

Output parameter: long

Assignment: reading the compression level of images when work-
ing with the respective graphic formats (see section
5.6.3)

6.5.89. RFID_Command_UseDeviceDriverLog

Input parameter: bool
Output parameter: not used
Assignment: activation/deactivation of SDK logging on device driver

level (see section 5.5.1)

6.5.90. RFID_Command_Session_LoadData_Reparse

Input parameter: TCustomRawData *
Output parameter: TRFID_Session **
Assignment: the procedure of creating a session object on the basis

of the existing integral block of data (see section 5.8.22)

This is an analogue of RFID Command Session LoadData command (see section
6.5.85) except that there is a repeated logical analisys of the data provided taking place
with a composition of a new set of possible notifications.

304 Version 3.5 RGVI.00010-01 33 01 © Regula, 2021

6. SDK SOFTWARE TOOLS

6.5.91. RFID Command Set UseExternalCSCA

Input parameter: long
Output parameter: not used
Assignment: limitation of the use of CSCA-certificates submitted by

individual data files only (see section 5.5.2)

A sign of the limitation is specified in params parameter of this command (true or
false).

6.5.92. RFID Command_Get_UseExternalCSCA

Input parameter: not used

Output parameter: long *

Assignment: request the limitation of the use of CSCA-certificates
submitted by individual data files only (see sec-
tion 5.5.2)

6.5.93. RFID_ Command_Set TCC Params

Input parameter: char *
Output parameter: not used
Assignment: setting TCC service parameters

The command sets parameters of the TCC service implemented according to the standard
BSI TR-03129. A json with the following structure is expected as an input parameter:

{

"tccParams": {
"serviceUrl":"...",
"ofxCertUrl":"...",
"ofxPassPhrase'":"..."

}
}

serviceUrl — URL of the TCC service;

pfxCertUrl — URL from which a PFX certificate of the service is downloaded;
pfxPassPhrase — PFX certificate passphrase (required if the certificate is protected with a
passphrase).

Version 3.5 RGVI.00010-01 33 01 MZ © Regula, 2021 305

